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Abstract

This paper introduces the Voting with Random Proposers (VRP) procedure to address

the challenges of agenda manipulation in voting. In each round of VRP, a randomly

selected proposer suggests an alternative that is voted on against the previous round’s

winner. In a framework with single-peaked preferences, we show that the VRP pro-

cedure guarantees that the Condorcet winner is implemented in a few rounds with

truthful voting, and in just two rounds under sufficiently symmetric preference dis-

tributions or if status quo positions are not extreme. The results have applications

for committee decisions, legislative decision-making, and the organization of citizens’

assemblies and decentralized autonomous organizations.
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1 Introduction

In various collective decision-making scenarios such as committee deliberations, legislative

processes, and the governance of proof-of-stake blockchains, members of the corresponding

bodies face the challenge of selecting a single alternative from a large set of options. A widely

used approach in such contexts is to conduct successive rounds of pairwise majority voting

(Rasch, 2000). For instance, legislative bodies often refine bills by sequentially voting on

amendments, and negotiating parties in multi-agent resource allocation problems typically

converge on a solution through incremental steps. However, with a large number of alter-

natives, it becomes infeasible to consider all options comprehensively. Moreover, the final

outcome is highly sensitive to the subset of alternatives chosen for voting and the sequence

in which they are presented. This creates a well-known vulnerability, whereby strategic

monopoly agenda setters can manipulate the decision-making process to achieve outcomes

aligned with their preferences, as extensively documented in the literature.1

To address these challenges, we introduce an iterative majority voting procedure where,

in each round, a randomly selected proposer from the society suggests an alternative to be

voted against the winner of the previous round. We refer to this method as “Voting with

Random Proposers” (VRP). The random selection of proposers is designed to decentralize

and democratize the agenda-setting process, thus preventing any single agent from domi-

nating the proposal sequence. Our analysis focuses on a simplified framework with a fixed

number of voting rounds, one-dimensional alternatives, and a society of agents with sym-

metric single-peaked preferences with publicly known distribution. Additionally, only the

final winning alternative is payoff relevant to the members of the society.

Our main goal is to analyze the strategic incentives created by the VRP procedure for

both voters and proposers, while assessing its efficiency in selecting the socially optimal

1See the classic contributions by McKelvey (1979), Rubinstein (1979), Bell (1981), Schofield (1983) and the
more recent contributions that have extended and applied the potential and limit of agenda power to various
settings, Barberà and Gerber (2017), Nakamura (2020) and Ali, Bernheim, Bloedel, and Console Battilana
(2023). We refer to Horan (2021) and Rosenthal and Zame (2022) for a recent account of the literature and
to Banks (2002) for a review of the earlier literature.
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Condorcet winner. We show that the weakly dominant strategy for the proposers in all

rounds except the final one is to propose the Condorcet winner, unless their peak lies at the

tail of the preference distribution, in which case they propose their own peak. For voters,

truthful voting is the weakly dominant strategy, whether they are sophisticated (maximizing

continuation utility) or myopic (favoring their current top choice).

As a result, the probability of implementing the socially optimal alternative converges to

one after only a few voting rounds. For balanced distributions of the preferences, where the

median and mean are sufficiently close, the Condorcet winner is obtained in only two voting

rounds, independently of the status quo and the proposers’ preferences. Even for arbitrary

distributions of preferences in society, the Condorcet winner is selected in two rounds if the

status quo is not too extreme. The main intuition is that proposal-makers who are not in

the final round face the following trade-off: if they propose a policy at or near their own

peak, they risk that the final outcome will shift to the opposite side of the median. This risk

can be avoided by proposing the median peak instead.

Our results demonstrate that current iterative voting procedures can be optimized by

engaging randomly selected proposal-makers, thereby increasing the likelihood of reaching

the Condorcet winner or at least come as close as possible. The VRP procedure has a

wide range of potential applications, not only within standard collective decision-making

bodies, such as committees and legislative bodies, but also in citizens’ assemblies that prepare

proposals for city councils or parliaments. In this context, it may be optimal to select two

randomly chosen citizen groups to develop proposals, which the assembly would then vote

on, advancing the winning alternative to the next decision-making body. Moreover, this

procedure could be effectively employed to decide on initiatives in direct democracies and

can be easily adapted for decentralized autonomous organizations operating with distributed

ledger technologies.

2



2 Relation to Literature

Since the seminal result of Moulin (1980), it is well known that in the case of single-peaked

preferences, the Condorcet winner can be selected by asking agents to announce their peak,

adding a number of fixed peaks, and using a suitable generalized median rule. 2 This

result has been considerably extended by Border and Jordan (1983), Barberà and Jackson

(1994), and Klaus and Protopapas (2020). Unlike their mechanism design approach, our

paper focuses on an alternative implementation problem: There is no central authority with

commitment, i.e. a mechanism designer. The procedures can only involve proposal-making

by agents and voting with equal proposal-making and agenda rights. Such procedures are

sometimes called democratic mechanisms (see Gersbach (2009)) and also mirror common

practices in parliamentary decision-making in representative democracies and referenda in

direct democracies. In particular, we focus on procedures that present agents with two

alternatives at a time.

Our paper also relates to the work of Miller (1977), who demonstrates that a Condorcet

winner is selected through sophisticated and potentially strategic voting, regardless of the

agenda, as long as it includes the Condorcet winner. Similarly, Austen-Smith (1987) shows

that strategic voting and sincere voting may be observationally equivalent since agenda-

setters will propose options that can defeat the last winning proposal under sincere voting.

We extend these insights by showing that the random selection of agenda-setters in an

iterative majority voting process creates strong incentives for them to propose the Condorcet

winner, even when they are self-interested and strategic. Additionally, we demonstrate that

this procedure is strategy-proof.

Legislative bargaining models commonly feature random proposer selection and iterative

majority voting on proposals, a framework originating from the seminal work of Baron and

2Moulin (1980) has shown that any strategy-proof social choice function on the domain of single-peaked
preferences is a generalized median-rule that selects the median of the voters’ ballots and n ´ 1 fixed
ballots, where n is the number of voters. However, not all generalized median rules select the Condorcet
winner.
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Ferejohn (1989). While much of the subsequent literature has focused on bargaining with

an exogenous status quo3, another line of research, notably Anesi and Seidmann (2014),

explores dynamic bargaining models with an endogenous status quo, where the status quo

is determined by the outcome of the bargaining in the previous round.4 Our model features

several important deviations from these frameworks, including a finite number of voting

rounds, a one-dimensional policy space5, and a single payoff-relevant outcome. Within this

context, our model can be classified as a spatial legislative bargaining model featuring an

endogenous status quo and a finite horizon. We obtain moderation due to the threat of

future polarization: If I know that my ideological opponent will make a proposal tomorrow,

I have an incentive to constrain her through my proposal today. In the presence of a decisive

median voter, the way to impose such a constraint is to propose a policy that appeals to the

median.

Our paper also relates to the literature on strategic polarization. Kalai and Kalai (2001)

demonstrate that strategic behavior within aggregation games tends to foster polarization.

In comparison, our work illustrates that well-crafted institutional mechanisms, such as the

Voting with Random Proposers procedure, can promote moderation and facilitate conver-

gence toward compromise, more exactly the Condorcet winner. The intuition behind this

contrast is the following. Polarization arises when each player directly influences the aggre-

gate outcome. VRP, however, counters this by removing direct aggregation and instead using

randomized sequential proposals with majority voting. In another work, Eraslan, Evdoki-

mov, and Zápal (2020) show that equilibrium outcomes evolve gradually through repeated

majority voting, but the process may take many rounds. In comparison, our investigations

demonstrate that randomizing proposers aligns incentives so that the Condorcet winner

emerges almost immediately, often within just two rounds. Thus, while the former relies on

3See Eraslan and Evdokimov (2019) for a review.
4This literature has been recently surveyed in Eraslan, Evdokimov, and Zápal (2022).
5In this respect, our paper relates to the literature on spatial bargaining, including Baron (1991), Banks and
Duggan (2000), Kalandrakis (2016), and Zapal (2016).
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gradual stabilization through voting dynamics, the latter achieves rapid convergence through

institutional design of the proposal stage.

Our research on voting with random proposers over a large set of alternatives also relates

to the literature on algorithmically determined and iterative voting procedures with a random

component in various policy spaces, as developed by Airiau and Endriss (2009), Goel and

Lee (2012) and Garg, Kamble, Goel, Marn, and Munagala (2019), among others. We add to

this literature by studying a simple procedure to implement the Condorcet winner.

Finally, when designing iterative voting procedures with endogenous proposal-making, it

is crucial to identify alternatives in each round that are closer to the Condorcet winner.6

In this sense, our work contributes to the literature by Callander (2011), Riboni and Ruge-

Murcia (2010), and Barberà and Gerber (2022), which examines how to identify desirable

policies to put to a vote. We demonstrate that the sequential random selection of proposers

plays a pivotal role in guiding proposers toward making socially superior proposals.

3 The Model

Consider a society that consists of a continuum of agents with mass one, each of them pri-

vately informed about their type θ P r0, 1s. Throughout this paper, we make the assumption

that the agents’ types are distributed according to a cumulative distribution function F

allowing for a density f and satisfying either:

ż θµ

0

`

1 ´ F pθµ ` tq ´ F pθµ ´ tq
˘

dt ě 0, if θµ ď 0.5,

or
ż 1´θµ

0

`

1 ´ F pθµ ` tq ´ F pθµ ´ tq
˘

dt ď 0, if θµ ą 0.5,

6We use reaching the Condorcet winner as the objective of designing voting procedures.

5



where θµ denotes the median of the distribution. Note that this condition also implies, on

the one hand, Epθq ě θµ if θµ ď 1
2
and, on the other hand, Epθq ď θµ if θµ ą 1

2
.7

Some prominent distributions which satisfy this condition are the uniform Upr0, 1sq, all

Beta distributions Betapα, βq, the truncated Normal and the truncated Logistic distribution

(where truncated means that we draw (and possibly independently redraw) from the more

general distribution but only keep values falling in r0, 1s).

A more classical assumption which implies this somewhat technical condition is to ask for

the agents’ types to follow an absolutely continuous distribution θ „ F with nowhere-zero

density function f ą 0 and median θµ such that 1 ´ F pθµ ´ xq ´ F pθµ ` xq is of the same

sign for all x P r0, 1s.

The distribution of the types is public knowledge. The utility of an agent of type θ from

an alternative x P r0, 1s is given by uθpxq “ ´px ´ θq2, therefore it has a unique maximum

at θ and is symmetric around θ.

We define a function c : r0, 1s Ñ r0, 1s, x ÞÑ mintmaxt2θµ ´ x, 0u, 1u. Thus, the function

gives for each x the alternative with the following property: the farthest positioned alterna-

tive in r0, 1s that is just as much or more preferred than x by the society. Note in particular

that whenever x P pmaxt0, 2θµ ´ 1u,mint2θµ, 1uq, we have F
´

x`cpxq

2

¯

“ F pθµq “ 1
2
.

Furthermore, we define a lower and upper threshold for the types as follows

θ “ maxt0, tθ ă 2θµ ´ 1 :

ż 1

θ

uθpvqfpvqdv “ uθpθµquu,

θ̄ “ mint1, tθ ą 2θµ :

ż θ

0

uθpvqfpvqdv “ uθpθµquu.

Intuitively, the lower threshold type θ has the same expected utility from final winners larger

than the own peak as the utility from the median peak. Similarly, the upper threshold type

θ̄ has the same expected utility from final winners smaller than the own peak as the utility

from the median peak. In right-skewed distributions, θ̄ “ 1, and in left-skewed distributions,

7This can be seen by writing out the term Epθq ´ θµ as an integral.
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θ “ 0 by definition. Observe that for distributions of the types for which the expected utility

of the two most extreme types over all possible final winners in r0, 1s is smaller than the

utility from the median peak, the upper and lower threshold types are 1 and 0, respectively.

Voting with Random Proposers

The society uses a multi-round voting procedure called Voting with Random Proposers to

implement an alternative from the interval r0, 1s in a publicly known fixed number of voting

rounds T . Suppose that initially, there is a status quo alternative q1 P r0, 1s. In round t “ 1,

an agenda-setter of type θs1 is randomly drawn from the distribution F and makes a proposal

p1 P r0, 1s. Then, a majority-vote between p1 and q1 takes place, where ties are resolved in

favor of the proposal. All voters in the society take part in each round of voting. The winner

of the first voting round w1 becomes the status quo in the next round, i.e. w1 “ q2. In round

t “ 2, a new agenda-setter is randomly drawn and the process is repeated. The procedure

ends at round T and the winner of the last round wT is implemented. Agenda-setters and

voters are assumed to be strategic, i.e. they would choose a proposal or vote in favour of

alternatives in order to maximize the proximity of the final winner to their type.

Equilibrium concept

To analyze the dynamic voting game, we use the equilibrium concept of Subgame Per-

fect Nash Equilibrium (SPNE), with the refinement of stage-undomination (Baron & Kalai,

1993), i.e. given future play prescribed by the strategy profile, no player ever plays a weakly

dominated action in any voting subgame. Stage-undomination also allows to pin down the

voting behavior of individuals who are not critical, which is not constrained by subgame

perfection. Under stage-undomination, individuals always vote for the alternative that max-

imizes their continuation utility, as if they were critical. For tractability, we use a continuum

of voters and apply stage-undomination as if we had a finite number of agents. Hence-

forth, we call an SPNE satisfying the refinement of stage-undominated strategies simply an
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equilibrium.

4 Optimal Proposal-Making and Truthful Voting

In this section, we study the optimal proposal of the proposers, depending on their type,

the distribution of preferences, and the status quo, as well as the outcome of the VRP

procedure. As we show in the theorem below, the equilibrium strategy for all proposers

in rounds t P t1, 2, . . . , T ´ 1u is identical, and they either propose their own type or the

Condorcet winner. In the last round of voting, the agenda-setter proposes either their own

type or the farthest positioned alternative that wins in a pairwise vote against the status

quo.

Theorem 1. The optimal proposal under Voting with Random Proposers is given as follows:

in rounds t P t1, 2, . . . , T ´ 1u

pt “

$

’

’

&

’

’

%

θst if maxtqt, θstu ă θ or mintqt, θstu ą θ̄,

θµ else.

and pT “

$

’

’

&

’

’

%

mintθsT , cpq
T qu if qT ď θµ,

maxtθsT , cpq
T qu if qT ą θµ.

Truthful voting is a weakly dominant strategy. The probability of implementing the Condorcet

winner for T P t2, 3, . . . u is given by

ProbpwT
“ θµq “

$

’

’

&

’

’

%

1 ´ F pθqT´1 if θµ ě 0.5,

1 ´ p1 ´ F pθ̄qqT´1 if θµ ă 0.5.

Proof. See Appendix A.

Proposers face a trade-off between proposing their own type to maximize their utility and

proposing the Condorcet winner to insure themselves against unfavorable final winners. The

closer a proposer’s type is to the Condorcet winner, the stronger the incentive to propose
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it. The share of such voters increases with the symmetry of the distributions of the types.

However, in sufficiently skewed distributions, the Condorcet winner is positioned closer to

one extreme, leading proposers with preference peaks at the tail of the distribution to favor

their own type. This is the case, because the potential benefit from having all subsequent

proposers positioned at the tail outweighs the insurance gained by proposing the Condorcet

winner, which is nearly as disliked as the extreme opposite alternatives. The optimal strategy

of the proposers is illustrated in Figure 1, depending on the distribution of the types.

θ „ βp4, 2q θ „ βp20, 2q θ „ βp0.3, 0.2q
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Figure 1: The first row depicts the optimal proposals in rounds t P t1, 2, . . . , T ´ 1u for
different Beta distributions of the types. All types positioned in the green regions of the
distribution propose the Condorcet winner, and those in the red regions propose their own
type. The dashed line marks the position of the Condorcet winner. The second row shows
the probability of the Condorcet winner being implemented for T P t2, . . . , 5u for each of the
three distributions of the types. Note that if the distribution is sufficiently symmetric, as in
the left plot, all types propose the Condorcet winner.

It follows from the proposers’ equilibrium strategy that for highly skewed distributions of

the types and a status quo positioned at the tail of the distribution, the final winner might
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also be at the tail, though this scenario becomes less likely with more voting rounds. Thus,

the probability of implementing the Condorcet winner rapidly approaches one within a few

rounds, as illustrated in Figure 1. Specifically, when θµ ě 0.5, we have ProbpwT “ θµq “

1 ´ F pθqT´1 ě 1 ´ F pθµqT´1. Using 1 ´ F pθµqT´1 as a lower bound, it follows that the

probability of implementing the Condorcet winner within six voting rounds exceeds 96.8%,

regardless of the specific distribution of types.

This proposal strategy is supported by a truthful voting behavior of sophisticated voters

maximizing their continuation utility. However, as we show in Lemma 3 in the Appendix, it

is also sustained if voters are truthful and myopic, i.e. vote for the more preferred alternative

in the current round. Intuitively, this is the case because there is always a majority of voters

for which the two strategies coincide, given the optimal strategy of the proposers.

As we demonstrate in the following proposition, if the distribution is sufficiently symmet-

ric or the initial status quo is sufficiently balanced, the VRP procedure effectively implements

the socially optimal alternative in only two rounds of voting.

Proposition 1. Voting with Random Proposers implements the Condorcet winner in T “ 2

rounds for any status quo q1 P rθ, θ̄s and any proposer’s type θs1 P rθ, θ̄s, presupposed that

the distribution of the voters’ types F is such that

Varpθq ě θ2µ ´ Epθq
2 if θµ ě 0.5,

Varpθq ě p1 ´ θµq
2

´ p1 ´ Epθqq
2 if θµ ă 0.5.

Moreover, the voting procedure is strategy-proof.

Proof. See Appendix B.

Proposition 1 establishes the conditions under which the Condorcet winner can be im-

plemented in two rounds. In particular, implementation is guaranteed when the distribution

is not highly asymmetric, a condition that holds when the median and the mean are suffi-

ciently close, regardless of the status quo and the proposer’s type. Intuitively, in such cases,
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all types prefer to propose the Condorcet winner instead of their own peak since otherwise

a next proposer may be able to implement a policy on the other side of the distribution of

peaks. The threat of a polarized outcome tomorrow induces moderation in today’s policies.

Note that proposing the Condorcet winner is a weakly dominant strategy even in a polarized

society, as long as the distribution is sufficiently symmetric. Additionally, we show that

the Condorcet winner can be implemented in two rounds for arbitrary distributions of voter

preferences, provided that the status quo or the proposer’s type in the first round is not

extreme.

5 Discussion and Outlook

We demonstrate that incorporating random proposers into an iterative majority voting pro-

cess efficiently implements the socially optimal alternative within a few rounds. Furthermore,

if individual utility-maximizing alternatives are sufficiently symmetrically distributed or the

status quo is balanced, the VRP procedure selects the Condorcet winner in only two rounds.

We use a simple framework in which the distribution of peaks of the individual preferences

is public knowledge. Even if the distribution is unknown, our results would imply that each

proposer would like to guess the position of the Condorcet winner and propose it, unless the

proposer believes to have a peak in the tail of the distribution. Therefore, the intermediate

winners would also converge to the Condorcet winner, but possibly in more rounds.

It is well known that a Condorcet winner might not exist when preferences violate single-

peakedness and pairwise voting procedures might exhibit cycles. Voting with Random Pro-

posers offers a probabilistic solution to resolving such cycles. Future research should build

on the work of Airiau and Endriss (2009), who show that the proposal dynamic resembles a

Markov chain, and explore the convergence and strategic incentives of the players.
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Notation

Variable Explanation

r0, 1s Policy space

θ Type of an agent in r0, 1s, representing his/her peak of pref-

erences

F Cumulative distribution function of types

f Density function of types

θµ Median of the type distribution

Epθq Mean of the type distribution

Varpθq Variance of the type distribution

βpα, βq Beta distribution with parameters α and β

uθpxq Utility of type θ for policy x

cpxq Reflection of x around θµ, truncated to r0, 1s

θ Lower threshold type

θ̄ Upper threshold type

T Fixed number of voting rounds

qt Status quo in round t; qt`1 “ wt

pt Proposal made in round t by the randomly drawn proposer

wt Winner of the pairwise majority vote in round t

θst Type of the proposer drawn in round t
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A Appendix: Proof of Theorem 1

Recall that cpxq denotes the farthest positioned alternative in r0, 1s that is at least as pre-

ferred as x. It is given by the symmetric point of x with respect to the Condorcet winner,

θµ, i.e., cpxq :“ mintmaxt2θµ ´ x, 0u, 1u. We solve the sequential game through backward

induction starting at round T .

Optimal proposal in round T

Note that in the last round of voting T , the voters vote truthfully independent of the pro-

posed alternatives. This is due to the fact that the procedure is a simple majority voting

between two alternatives and the voters have single-peaked preferences. Thus, the winning

alternative from the last pairwise vote wppT , qT q for qT ď θµ is given by

(1) wppT , qT q “

$

’

’

&

’

’

%

pT if pT P rqT , cpqT qs,

qT if pT P r0, qT q Y pcpqT q, 1s.

The peak of the preference of the agenda-setter at round T is given by θsT . Consider the

optimization problem of the agenda-setter in round T :

argmax
pT PrqT ,cpqT qs

´ppT ´ θsT q
2.

Note that the proposer is not constrained about the position of the proposal in the interval

r0, 1s by the voting procedure, but he/she would anticipate that proposing an alternative in

r0, qT q or pcpqT q, 1s would lose the pairwise vote and cannot be utility-improving. Thus, the

optimal proposal and final winner are given by

pT P

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

r0, qT s if θsT P r0, qT s,

tθsT u if θsT P rqT , cpqT qs,

tcpqT qu else.

wppT , qT q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

qT if θsT P r0, qT s,

θsT if θsT P rqT , cpqT qs,

cpqT q else.

16



Note that whenever θsT P r0, qT q, the winner is qT , hence proposing θsT is a weakly

dominant strategy for θsT P r0, cpqT qs. We obtain an analogous result for the case qT ą θµ

and provide the final solution below:

pT “

$

’

’

&

’

’

%

mintθsT , cpq
T qu if qT ď θµ,

maxtθsT , cpq
T qu if qT ą θµ.

wppT , qT q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

mintqT , cpqT qu if θsT ă mintqT , cpqT qu,

maxtqT , cpqT qu if θsT ą maxtqT , cpqT qu,

θsT else.

Optimal proposal in round T ´ 1

We now consider the optimal proposal and voting at round T ´ 1. We organise the proof

in the following way. First, we derive the winner of round T ´ 1 that would maximize the

expected utility of the proposer, which, as we show, is either the proposer’s own peak or

the Condorcet winner. Then, we determine the optimal proposals in round T ´ 1. Finally,

we show that the majority of the strategic voters would vote in favour of the proposal in

Lemma 1.

We now state the expected utility of the proposer θsT´1 when proposing w in round T ´1.

To ease the notation we denote the proposers type θsT´1 “ θs in this subsection:

EUspwq “

$

’

’

&

’

’

%

şw

0
uθspwqfpvqdv `

şcpwq

w
uθspvqfpvqdv `

ş1

cpwq
uθspcpwqqfpvqdv if w ď θµ,

şcpwq

0
uθspcpwqqfpvqdv `

şw

cpwq
uθspvqfpvqdv `

ş1

w
uθspwqfpvqdv if w ą θµ,

which can be simplified as follows:

EUspwq “

$

’

’

&

’

’

%

uθspwqF pwq `
şcpwq

w
uθspvqfpvqdv ` uθspcpwqqp1 ´ F pcpwqqq if w ď θµ,

uθspcpwqqF pcpwqq `
şw

cpwq
uθspvqfpvqdv ` uθspwqp1 ´ F pwqq if w ą θµ.

Each of the three terms in the expected utility function corresponds to the possible winners

in round T , depending on the proposer’s type in round T . In the case when w ď θµ and for
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θsT P r0, wT´1q, the final winner is wT “ qT “ wT´1. For θsT P rwT´1, cpwT´1qs, the final

winner will be θsT . Finally, for θsT P pcpwT´1q, 1s, the final winner is cpwT´1q. The analogous

argument holds for the case when w ě θµ.

We proceed by finding the utility-maximizing winner considering the following cases.

Case 1: wT´1 P r0, 2θµ ´ 1s. Thus, cpwT´1q “ 1. The first order condition is given by

uθspwq
1F pwq ` uθspwqfpwq ´ uθspwqfpwq “ uθspwq

1F pwq “ 0.

Observe that EUspwq is monotonically increasing for θs ě maxt2θµ´1, 0u. If θs ă maxt2θµ´

1, 0u, we have uθspwq1 “ 0 when wT´1 “ θs. Thus, EUspwq has a maximum at wT´1 “ θs as

uθspwq1 “ 2pθs ´ wq and

wT´1
“ mint2θµ ´ 1, θsu.

Case 2: wT´1 P p2θµ ´ 1, θµs. By definition, cpwT´1q “ 2θµ ´ wT´1. The FOC is given by8

uθspwq
1F pwq`uθspwqfpwq ´ uθspcpwqqfpcpwqq ´ uθspwqfpwq´

´ uθspcpwqq
1
p1 ´ F pcpwqqq ` uθspcpwqqfpcpwqq “ 0,

uθspwq
1F pwq´uθspcpwqq

1
p1 ´ F pcpwqqq “ 0.

Observe that if w “ θµ, then cpwq “ θµ and the equation is satisfied. Hence, wT´1 “ θµ.

Case 3: wT´1 P rθµ, 2θµq. We have cpwT´1q “ 2θµ ´ wT´1. The FOC is given by

´uθspcpwqq
1F pcpwqq´uθspcpwqqfpcpwqq ` uθspwqfpwq ` uθspcpwqqfpcpwqq`

` uθspwq
1
p1 ´ F pwqq ´ uθspwqfpwq “ 0,

´uθspcpwqq
1F pcpwqq`uθspwq

1
p1 ´ F pwqq “ 0.

Thus, the utility maximizing w is equal to the Condorcet winner.

8One can also verify the second-order conditions.
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Case 4: wT´1 P r2θµ, 1s. Thus, by definition cpwT´1q “ 0. The FOC is given by

uθspwq
1
p1 ´ F pwqq ` uθspwqfpwq ´ uθspwqfpwq “ uθspwq

1
p1 ´ F pwqq “ 0.

Observe that EUspwq is monotonically decreasing for θs ď mint2θµ, 1u. If θs ą mint2θµ, 1u,

the expected utility is maximized at wT´1 “ θs. Thus,

wT´1
“ maxt2θµ, θsu.

Thus, the utility-maximizing winner of round T ´ 1 is

wT´1
P tmint2θµ ´ 1, θsT´1u, θµ,maxt2θµ, θsT´1uu.

We organise the rest of the proof in a series of lemmas:

1. we identify the interval of types of proposers who have a higher expected utility from

θs winning round T ´ 1 instead of θµ when θs ă 2θµ ´ 1 or θs ą 2θµ,

2. we show that all such types of proposers prefer a winner within the interval over θµ,

3. truthful voting behavior is the optimal strategy.

In Lemma 3, we show that these voting strategies are equivalent in terms of outcomes to the

voting behavior of myopic voters, who simply vote for the preferred alternative in a given

round.

Lemma 1. If θs P r0, θs Y rθ̄, 1s, then EUspθsq ě uθspθµq, and if θs P rθ, θ̄s, then EUspθsq ď

uθspθµq.

Proof. Assume that the distribution F is such that θµ ą 0.5. We begin the proof by com-

paring the expected utility for type θs when the winner of round T ´ 1 is θs vs. the median
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peak for all types θs ă 2θµ ´ 1.

EUspθsq ´ uθspθµq “ uθspθsqF pθsq `

ż cpθsq

θs

uθspvqfpvqdv ` uθspcpθsqqp1 ´ F pcpθsqqq ´ uθspθµq

“

ż 1

θs

uθspvqfpvqdv ´ uθspθµq,

since uθspθsq “ 0 and cpθsq “ 1. In order to find the type for which the above expression is

positive, we will first show that the function EUspθsq ´ uθspθµq is monotonically decreasing

in θs. Differentiating the right-hand side of the above equality w.r.t. θs gives

2

ˆ

θsF pθsq `

ż 1

θs

vfpvqdv ´ θµ

˙

.(2)

For θs “ 0, the above expression (2) is negative since the expected value is smaller than the

median whenever θµ ą 0.5 by definition of F . It is also monotonically increasing in θs, which

is bounded from above by 2θµ ´ 1. Thus, we need to show that

p2θµ ´ 1qF p2θµ ´ 1q `

ż 1

2θµ´1

vfpvqdv ´ θµ ď 0.

Doing integration by parts on the left-hand side of the above inequality and then rewriting

the obtained term yields:

p2θµ ´ 1qF p2θµ ´ 1q `

ż 1

2θµ´1

v fpvq dv ´ θµ “ 1 ´ θµ ´

ż 1

2θµ´1

F pvq dv

“ 1 ´ θµ ´

ż 1´θµ

0

`

F pθµ ` tq ` F pθµ ´ tq
˘

dt “

ż 1´θµ

0

´

1 ´ F pθµ ` tq ´ F pθµ ´ tq
¯

dt ď 0,

where the non-positivity of the last term follows from the skewness condition on the distri-

bution F and the assumption that θµ ą 0.5 (which forces the sign in the condition to be

negative). Therefore, we have shown that EUspθsq´uθspθµq is monotonically decreasing in θs.

Recall the definition of the lower threshold type θ “ maxt0, tθ ă 2θµ ´ 1 :
ş1

θ
uθpvqfpvqdv “

uθpθµquu. Thus, EUθpθq ´ uθpθµq “ 0 and @θs P r0, θs, proposing the own type is associated
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with higher expected utility than proposing θµ. Note that for θs P r2θµ´1, 2θµs, our previous

analysis shows that the expected utility is maximized at pT´1 “ θµ.

We redo the analysis for distributions with θµ ď 0.5 to obtain the final result; consider a

distribution F with θµ ď 0.5. Then we are interested in right-extreme types with θs ą 2θµ,

where cpθsq “ 0. Using the previously obtained form of EU for w “ θs ą θµ we obtain

(uθspθsq “ 0)

EUθspθsq ´ uθspθµq “

ż θs

0

uθspvqfpvqdv ´ uθspθµq.

Analogous to the θµ ą 0.5 case, we differentiate that term w.r.t. θs:

d

dθs

´

EUθspθsq ´ uθspθµq

¯

“ 2

ˆ
ż θs

0

vfpvq dv ` θsp1 ´ F pθsqq ´ θµ

˙

.

Notice that the term in the bracket is nondecreasing in θs, in particular on our interval of

consideration r2θµ, 1s. Hence considering the term evaluated in 2θµ is sufficient.

´

EUθs ´ uθspθµq

¯1

θs“2θµ
“

ż 2θµ

0

vfpvq dv ` 2θµp1 ´ F p2θµqq ´ θµ

“

ż θµ

0

´

1 ´ F pθµ ` tq ´ F pθµ ´ tq
¯

dt ě 0,

using the skewness condition. Hence we conclude that EUθspθsq ´ uθspθµq is increasing in θs

on r2θµ, 1s. Taking a second look at the definition

θ :“ min
!

1, tθ ą 2θµ :

ż θ

0

uθpvqfpvq dv “ uθpθµqu

)

,

we have equality at θs “ θ and therefore

EUθspθsq ´ uθspθµq ě 0 for all θs P rθ, 1s.

The interior part argument (θs P rθ, θs, with θ “ 0 here) is identical to the ą 0.5 case:
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using the interior derivative

EU 1
θspwq “

$

’

’

’

&

’

’

’

%

2
”

F pwq pθs ´ wq `
`

1 ´ F pcpwqq
˘ `

cpwq ´ θs
˘

ı

if w ă θµ,

2
”

F
`

cpwq
˘

pθs ´ cpwqq `
`

1 ´ F pwq
˘

pw ´ θsq
ı

if w ą θµ,

one checks EU 1
θs

pwq ě 0 for w ă θµ, EU 1
θs

pwq ď 0 for w ą θµ, hence EUθspwq is maximized

at w “ θµ and EUθspθsq ď uθspθµq.

Next, we show that for sufficiently extreme types in r0, θs Y rθ̄, 1s, a winner that is within

the same bound is more preferred than θµ.

Lemma 2. For all θs P r0, θs Y rθ̄, 1s, EUspwq ě uθspθµq for all w P rθs, θs Y rθ̄, θss.

Proof. Assume that the distribution F is such that θµ ą 0.5 and θ ą 0. First note that

EUθspwq ´ uθspθµq is monotone decreasing for all w P rθs, θs. Thus, it suffices to show:

EUθspθq ´ uθspθµq “ uθspθqF pθq `

ż 1

θ

uθspvqfpvqdv ´ uθspθµq ě 0(3)

for all θs P r0, θs. First, observe that the type θs “ θ is indifferent between proposing θ and θµ

(following from the definition of θ). Thus, if we can show that the function is monotonically

decreasing w.r.t. θs, we would prove the claim. Differentiating the left-hand side w.r.t. θs

gives

2

˜

θF pθq `

ż 1

θ

vfpvqdv ´ θµ

¸

.

For θ “ 0, the expression is negative since the expected value is smaller than the median

whenever θµ ą 0.5 by definition of F . It is also monotonically increasing in θ, which is

bounded from above by 2θµ ´ 1. Hence, it suffices to prove that p2θµ ´ 1qF p2θµ ´ 1q `

ş1

2θµ´1
v fpvq dv ´ θµ ď 0. But we already showed this in the proof of Lemma 1, using
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integration by parts and the skewness condition on the distribution F .

Thus, we can conclude that θF pθq `
ş1

θ
vfpvqdv ´ θµ ď 0 and therefore, @θs P r0, θs,

proposing θs is associated with higher expected utility than proposing θµ.

We shall repeat the analogous analysis for distributions with θµ ď 0.5 to obtain the final

result. Notice that for θµ ď 0.5, θ “ 0, so we only consider θs P rθ, 1s. Fix θs ě θ and

w P rθ, θss. We split the argument into two claims to make it more legible.

First, we claim that EUθspwq ě EUθspθq for all w P rθ, θss. Since w ě 2θµ, cpwq “ 0 and

EUθspwq “

ż w

0

uθspvqfpvq dv ` uθspwq
`

1 ´ F pwq
˘

.

Taking the derivative w.r.t. w gives us

EU 1
θspwq “ ´2pw ´ θsq p1 ´ F pwqq,

which is ě 0 on rθ, θss. This tells us that EUθspwq ě EUθspθq.

Second, we claim that for all θs ě θ, EUθspθq ě uθspθµq.

Now, we consider Kpθsq :“ EUθspθq´uθspθµq as a function of θs. First, notice that Kpθq “ 0.

Taking the derivative w.r.t. θs gives

K 1
pθsq “ 2

˜

ż θ

0

vfpvq dv ` θp1 ´ F pθqq ´ θµ

¸

“ 2
`

ϕpθq ´ θµ
˘

,

using a helper-function ϕpxq :“
şx

0
vfpvq dv ` xp1 ´ F pxqq, which is nondecreasing since

ϕ1pxq “ 1´F pxq ě 0. Hence, evaluating 2 pϕp2θµq ´ θµq gives a lower bound on the value of

K 1pθsq:

2

ˆ
ż 2θµ

0

vfpvq dv ` 2θµp1 ´ F p2θµqq ´ θµ

˙

“ 2

ż θµ

0

`

1 ´ F pθµ ` tq ´ F pθµ ´ tq
˘

dt ě 0,

by the skewness condition, and thus K 1pθsq ě 0. Using that Kpθq “ 0, we get for all θs ě θ
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that Kpθsq ě 0, or equivalently EUθspθq ě uθspθµq.

Combining the two claims now gives EUθspwq ě EUθspθq ě uθspθµq for all θs P rθ, 1s and

w P rθ, θss.

The weakly dominant strategy for the agenda-setter in round T ´ 1 is therefore:

(4) pT´1
“

$

’

’

&

’

’

%

θsT´1 if maxtqT´1, θsT´1u ă θ or mintqT´1, θsT´1u ą θ̄,

θµ else.

Finally, we show that this optimal proposal can be sustained by truthful voting behavior.

We also show that the outcome is equivalent to myopic voting, i.e. when voters simply vote

for their preferred alternative in a given round.

Lemma 3. Sophisticated and myopic voting are equilibrium strategies under the proposer’s

strategy shown in Equation (4).

Proof. Suppose first that pT´1 “ θµ. Let the distribution of the types is such that θµ ą 0.5.

We know from Lemma 1 that all types θs R r0, θs Y rθ̄, 1s would prefer θµ to be the winner

of round T ´ 1 than their own type. Thus, the majority of voters would vote for θµ in

equilibrium. Since by definition F pθµq “ 0.5, the mass of voters who prefer θµ over qT´1 is

sufficient to win the election even if voters are myopic. We can make the analogous argument

if the distribution of the types is such that θµ ď 0.5.

Next, consider the strategic voting behavior when pT´1 “ θsT´1 . Suppose that F is

such that θµ ą 0.5, hence maxtqT´1, θsT´1u ă θ. Note that cpmaxtqT´1, θsT´1uq “ 1. In

that case, all voters with a type in rmaxtqT´1, θsT´1u, 1s strictly prefer maxtqT´1, θsT´1u,

since they anticipate that the final winner will be in the same interval as opposed to

rmintqT´1, θsT´1u, 1s if they support mintqT´1, θsT´1u. Therefore, maxtqT´1, θsT´1u would

win the vote in round T ´ 1. Recall that proposers of type θsT´1 have a higher expected

utility from maxtqT´1, θsT´1u than θµ as shown in Lemma 2, so they would still propose their
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type even if it loses against the status quo.9 We obtain the analogous result for distributions

with θµ ď 0.5.

Optimal proposal in rounds t P t1, 2, . . . , T ´ 2u

Note that if the distribution of the types is such that θ “ 0 and θ̄ “ 1, it is optimal for

all types to propose the Condorcet winner, based on our previous analysis. Suppose now

that the distribution is such that θµ ą 0.5 and θ ą 0. If qT´2 ą θ, the majority of utility-

maximizing (but also myopic) voters would not support a proposal pT´2 ă θ, hence θµ will

be proposed in the next round and will win the final round. Let qT´2 ď θ and assume that

voters vote in a way that maximizes their continuation utility. Note that cpqT´2q “ 1 by

definition. Therefore, the optimal proposal in round T ´ 1 is as follows:

pT´1
“

$

’

’

&

’

’

%

θsT´1 if maxtpT´2, qT´2, θsT´1u ă θ,

θµ else.

Hence, in finding the optimal proposal in round T ´ 2 we compare the expected utility of

making a proposal below the threshold value with the utility from proposing the median

type. This is the case because, if pT´2 ą θ, then the expected utility of the agenda-setter

is equal to the utility from the Condorcet winner, because it is going to be proposed in the

next round and implemented in the final round. First note that for all θsT´2 P r0, θs

EUθ
sT´2

pθsT´2q ´ uθ
sT´2

pθµq ě EUθ
sT´2

pθq ´ uθ
sT´2

pθµq.

This is the case because, if all subsequent agenda-setters’ types are smaller than θ, the

final outcome is in the interval rmaxtθsT´2 , qT´2u, θs, and is thus more preferred than θ. If

θsT´1 ď θ and θsT ě θsT´1 , the final outcome will be in the interval rθsT´1 , 1s, which will give

the agenda-setter at T ´ 2 a higher expected utility than by proposing θ, in which case the

9Note that this equilibrium strategy leads to the same outcome if voters follow a myopic truthful voting
strategy.
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final winner is in the interval rθ, 1s. Finally, if θsT´1 ą θ, the agenda-setter is indifferent

between the two strategies, because θµ will be proposed and will win. Let us now derive the

difference in expected utilities by proposing θ vs. the Condorcet winner:

EUθ
sT´2

pθq ´ uθ
sT´2

pθµq “ uθ
sT´2

pθqF pθq
2

` F pθq

ż 1

θ

uθ
sT´2

pvqfpvqdv ´ uθ
sT´2

pθµqF pθq

“ F pθqpEUθ
sT´1

pθq ´ uθ
sT´1

pθµqq.

The first term in the above expression refers to the case when all subsequent agenda-setters’

types are in the interval r0, θs and hence, θ is implemented. The second term refers to the

case when θsT´1 ď θ and θsT ě θ and the final winner is θsT . Finally, if θsT´1 ą θ, the

Condorcet winner is proposed in round T ´ 1 and wins irrespective of the proposal in the

last round. As we have shown in the proof of Lemma 2, EUθ
sT´1

pθq ´ uθ
sT´1

pθµq ě 0, and

hence, the optimal pT´2 “ θsT´2 whenever θsT´2 ď θ.

Next, suppose that θs P rθ, θµs. We compare EUθspθq against uθspθµq.

EUθspθq ´ uθspθµq “ upθqF pθq
2

` F pθq

ż 1

θ

upvqfpvqdv ´ upθµqF pθq ď 0.

Note that upθq ă 0 and
ş1

θ
upvqfpvqdv´upθµq ă 0 for θs P pθ, θµs. Therefore, such agents are

better off by proposing the Condorcet winner. Thus, the optimal proposal for all agenda-

setters in round T ´ 2 coincides with the one in round T ´ 1. We can repeat the same

argument for distributions with θµ ď 0.5 and verify that the optimal proposal coincides with

the one derived for round T ´ 1.

Note that the argument generalizes to all rounds t P t1, 2, . . . , T ´ 2u since

EUθst
pθq ´ uθst

pθµq “ uθst
pθqF pθq

T´t
` F pθq

T´t´1

ż 1

θ

uθst
pvqfpvqdv ´ uθst

pθµqF pθq
T´t´1.

Finally, observe that Lemma 1 holds in that case as well, hence the voting procedure is

strategy-proof.

26



In order to obtain the probability of implementing the Condorcet winner, observe that

the only case in which it will not be proposed in the first T ´ 1 rounds is when all types of

proposers are in the interval r0, θs or rθ̄, 1s, depending on the skewness of the distribution.

Moreover, no other alternative is proposed in the first T ´ 1 rounds, which leads us to the

final answer.

B Appendix: Proof of Proposition 1

Observe that if the distribution of preferences is such that θ “ 0 when θµ ě 0.5 and

θ̄ “ 1 when θµ ă 0.5, the optimal proposal at T ´ 1 is always θµ. Therefore, we need

that
ş1

0
u0pvqfpvqdv ď u0pθµq when θµ ě 0.5 and

ş1

0
u1pvqfpvqdv ď u1pθµq when θµ ă 0.5.

Substituting the utility function, we obtain in the former case:

ż 1

0

v2fpvqdv ě θ2µ,

which is equal to θ2µ ´ Epθq2 ď Varpθq. Note that if the distribution is such that θµ ě 0.5,

this implies that θµ ą Epθq and the inequality is not trivially satisfied. In the latter case, we

simplify the inequality
ş1

0
u1pvqfpvqdv ď u1pθµq to obtain:

ż 1

0

v2fpvqdv ´ θ2µ ě 2p

ż 1

0

vfpvqdv ´ θµq

Varpθq ` Epθq
2

´ θ2µ ě 2pEpθq ´ θµq

Varpθq ě pEpθq ´ θµqp2 ´ Epθq ´ θµq

If θµ ă 0.5, then by definition of F , we have θµ ă Epθq. This implies that the above inequality

is not trivially satisfied. Anticipating that θµ will be proposed at T ´1 the latest, all previous

agenda-setters cannot do better by making other proposals. Knowing that the Condorcet

winner is going to be proposed at least at round T ´1, voting truthfully is therefore a weakly

dominant strategy for all voters.
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