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Abstract. This paper studies fictitious play in networks of noncooperative two-
person games. We show that continuous-time fictitious play converges to the set
of Nash equilibria if the overall n-person game is zero-sum. Moreover, the rate of
convergence is 1/7, regardless of the size of the network. In contrast, arbitrary n-
person zero-sum games with bilinear payoff functions do not possess the continuous-
time fictitious-play property. As extensions, we consider networks in which each
bilateral game is either strategically zero-sum, a weighted potential game, or a two-
by-two game. In those cases, convergence requires a condition on bilateral payoffs or,
alternatively, that the network is acyclic. Our results hold also for the discrete-time
variant of fictitious play, which implies, in particular, a generalization of Robinson’s
theorem to arbitrary zero-sum networks. Applications include security games, conflict

networks, and decentralized wireless channel selection.
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1. Introduction

Fictitious play (Brown, 1949, 1951; Robinson, 1951) refers to a class of simple and
intuitive models of learning in games. The common element of such models is that a
player is assumed to respond optimally to an evolving belief on the behavior of her
opponents, where the player’s belief at any point in time is formed on the basis of
the empirical frequencies of strategy choices made by her opponents up to that point.
Understanding the conditions under which fictitious play converges to Nash equilib-
rium is important because such results help to clarify the intuition that equilibrium
play may be reached even if players are not perfectly rational.! While variants of
fictitious play are known to converge in large classes of two-person games, the case of
n-person games has been explored to a somewhat lesser extent.’

Inspired by recent developments in the literature (Daskalakis and Papadimitriou,
2009; Cai and Daskalakis, 2011; Cai et al., 2016), the present paper studies the dy-
namics of fictitious play in general classes of network games. We start by considering
what we call zero-sum networks (Bregman and Fokin, 1987, 1998; Daskalakis and
Papadimitriou, 2009; Cai and Daskalakis, 2011; Cai et al., 2016). These are n-person
zero-sum games that can be represented as a network of two-person games. This class
of games is actually quite large and includes practically relevant examples of resource

allocation games such as generalized Blotto and security games. Our first main result

!The literature on fictitious play is too large to be surveyed here. For an introduction to the
theory of learning in games, see Fudenberg and Levine (1998). The literature on learning in social
networks has been surveyed by Acemoglu and Ozdaglar (2011). For a concise discussion of epistemic
vs. dynamic foundations of Nash equilibrium, see Krishna and Sjostrom (1997).

2Positive convergence results allowing for more than two players have been established, in partic-
ular, for games solvable by iterated dominance (Milgrom and Roberts, 1991), games with identical
interests (Monderer and Shapley 1996b; Harris, 1998), and certain classes of star-shaped network
games (Sela, 1999). Shapley (1964) pointed out that fictitious play need not converge to Nash equi-
librium in two-person non-zero-sum games, and he also noted that this observation extends to games
with more than two players. A three-person non-zero-sum counterexample has been constructed by
Jordan (1993). See also Gaunersdorfer and Hofbauer (1995).
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says that any continuous-time fictitious-play (CTFP) path in a zero-sum network
converges in payoffs to zero at rate 1/7 (where 7 denotes time), regardless of the size
of the network. In particular, CTFP converges to the set of Nash equilibria in any
zero-sum network. However, as we also show with an example, arbitrary n-person
zero-sum games with bilinear payoff functions need not possess the CTFP property,
i.e., the network assumption is crucial for our conclusions.

To prove our continuous-time convergence result, we employ the standard Lya-
punov approach (Brown, 1951; Hofbauer, 1995; Harris, 1998; Berger, 2006; Hofbauer
and Sorin, 2006; Hofbauer and Sandholm, 2009). Thus, we consider a Lyapunov
function that aggregates, across all players in the network, the maximum payoff that
could be obtained by optimizing against the empirical frequency distribution of prior
play. It is then shown that the Lyapunov function diminishes along the CTFP path
as 7 — o00. In slight departure from the literature, however, this property is estab-
lished by putting an upper bound on a Dini derivative instead of calculating the usual
(directional) derivate. As we argue in an Appendix, this may be seen as a certain
simplification vis-a-vis existing proofs.?

To gauge the role of the zero-sum assumption, we consider three additional classes
of network games. First, we look at networks of strategically zero-sum games, or
conflict networks.* Thus, each bilateral game in the network is assumed to be best-
response equivalent in mixed strategies to a zero-sum game. Moulin and Vial (1978)

noted that fictitious play converges in this class of two-person games. In conflict

3Driesen (2009) persues an alternative route to simplification, yet at the cost of assuming pure
choices, which might interfere with existence (cf. Harris, 1998, p. 242). See also Shamma and Arslan
(2004) who unify existing Lyapunov arguments in a set-up with a “soft-max” best response.

‘Recent papers that look at conflict networks include Bozbay and Vesperoni (2018), Dziubifiski
et al. (2016a), Franke and Oztiirk (2015), Huremovi¢ (2014), Jackson and Nei (2015), Konig et al.
(2017), Kovenock et al. (2015), Kovenock and Roberson (2018), Matros and Rietzke (2018), and Xu
et al. (2019), among others. For a survey, see Dziubinski et al. (2016b).
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networks, CTFP converges as well, provided that valuations in the bilateral games
satisfy a condition that we call pairwise homogeneity of valuations. This assump-
tion is satisfied, for example, in transfer networks considered by Franke and Oztiirk
(2015). When valuations are heterogeneous, however, convergence need not hold in
general. Intuitively, the aggregation of bilateral payoffs does not commute with the
equivalence relation, because payoff transformations that turn two bilateral games
into zero-sum games need not be identical. We illustrate this possibility with an
example of a network conflict that does not settle down under CTFP even though
the unique Nash equilibrium is peaceful. But convergence can still be obtained with
heterogeneous valuations when the underlying network is acyclic, i.e., when it is a dis-
joint union of trees.” Second, we assume that bilateral games are weighted potential
games. Applications include channel selection problems in wireless communication
networks, and the spreading of ideas and technologies over social networks, for in-
stance. Extending the analysis of Cai and Daskalakis (2011), we show that CTFP
converges to equilibrium in any network of exact potential games. However, as we
illustrate with still another example, fictitious play need not converge in general net-
works of weighted potential games. Instead, in analogy to the previously considered
case, the convergence result holds for weighted potential games under the condition
that the underlying network structure is acyclic. Third, by combining our findings
for conflict networks with pairwise homogeneous valuations and for networks of exact
potential games, we obtain a generalization of Miyasawa’s (1961) theorem to network
games on arbitrary graphs.

As an extension, the paper looks at discrete-time fictitious play (DTFP), gener-

alizing Robinson’s (1951) famous result for two-person zero-sum games to arbitrary

SE.g., any star-shaped network considered by Sela (1999) is acyclic, but the network shown in
Figure 1 below is not acyclic.
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n-person zero-sum networks, and showing that any DTFP is belief affirming, which
extends a result of Monderer et al. (1997). Finally, we discuss the possibility of
correlated beliefs which is a relevant aspect in multiplayer games.

Related literature. The first paper studying fictitious play in an environment
similar to ours is Sela (1999). His observation was that some of the convergence
results for two-person games generalize quite easily to n-person games with a “one-
against-all” structure. In that setting, one player located in the center of the star-
shaped network chooses a compound strategy that is the same in every bilateral
interaction. Then, the network game can be transformed into a two-person game in
which the choices of the peripheral players are orchestrated by a single agent that
maximizes the sum of the payoffs of those players. Under a specific tie-breaking rule,
the DTFP process in the reduced game turns out to be identical, for any given initial
condition, to the DTFP process in the “one-against-all” game. Thereby, DTFP and
CTFP properties in the network game can be established as a corollary of results for
two-person games, provided that the bilateral games are all of the same type, like
zero-sum, with identical payoffs, or generic two-by-two. It is, however, not obvious
how this approach could be applied to networks that are not star-shaped.® The
present paper extends the results of Sela (1999) to general network structures. We
also drop the tie-breaking rule and deal more explicitly with the case of CTFP.

An interesting recent strand of literature, related to the interdisciplinary field of
algorithmic game theory, has taken up the study of networks of two-person games.”
Cai et al. (2016) have clarified how far results traditionally known only for two-person

zero-sum games (such as solvability by a linear program, existence of a value, equiva-

6Daskalakis and Papadimitriou (2009) make a related point in their discussion of the complexity
of computing Nash equilibrium in networks of zero-sum games.

"Network games have, of course, a long tradition in game theory. See, e.g., the recent survey by
Bramoullé and Kranton (2016) and references given therein.
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lence of max-min and equilibrium strategies, exchangeability of Nash equilibria, and
the relationship to coarse correlated equilibrium) can be extended to zero-sum net-
works. Moreover, in that class of games, discrete-time no-regret learning algorithms
converge to the set of Nash equilibria (Daskalakis and Papadimitriou, 2009; Cai and
Daskalakis, 2011).% As will be discussed, those results do not allow any immediate
conclusions regarding the convergence of fictitious play in zero-sum networks. How-
ever, our convergence result for discrete-time fictitious play (Proposition 5) certainly
has a similar flair as the existing results regarding no-regret behavior.

Another natural class of network games is defined by the requirement that players
possess identical payoff functions in each bilateral game (Cai and Daskalakis, 2011).°
Under the condition that pairwise interactions are games with identical payoffs, the
network game is shown to possess an exact potential, which implies that, in this
class of games, certain learning algorithms converge to equilibrium. In particular,
the discrete dynamics of pure best responses converges to the set of Nash equilibria.
However, Cai and Daskalakis (2011) do not discuss fictitious play.

The remainder of this paper is structured as follows. Section 2 contains preliminar-
ies. Convergence of CTFP in zero-sum networks is established in Section 3. Section
4 deals with additional classes of games. DTFP is considered in Section 5. Section 6
discusses correlated beliefs. Section 7 concludes. Appendices provide auxiliary results
from the literature, details on two of our examples, and a discussion of the case of

JGWO—pGI'SOH ZEro-suin garmnes.

8Under no-regret behavior, a player’s expected payoff against past play is asymptotically weakly
lower than her average payoff experience. An example is the multiplicative-weights adaptive learning
algorithm (Freund and Schapire, 1999). See Cesa-Bianchi and Lugosi (2006). For useful discussions
of the relationship between no-regret learning and fictitious play, see Hart and Mas-Colell (2001)
and Viossat and Zapechelnyuk (2013).

9This class includes, e.g., binary coordination games, as considered by Bramoullé and Kranton
(2016, Prop. 3). See also Bramoullé et al. (2014) and Bourles et al. (2017). For early uses of
potential methods in network models, see Blume (1993) and Young (1993).



1

10

11

12

13

14

15

2. Preliminaries

2.1 Network games

There is a finite set V = {1,...,n} of players (countries, firms, consumers, political
institutions, etc).!® Let E C V x V be a set of bilateral relationships. Any two players
i,j € V are either in interaction (i.e., (¢,j) € E) or not (i.e., (i,j) ¢ E). Thus, the
pair (V, E) is a graph, and we assume that it is (i) undirected (i.e., Vi, j : (i,j) € F <
(4,1) € E) and (ii) irreflexive (i.e., Vi : (i,i) ¢ F).!! Each edge (i,j) € E represents a
finite two-person game G;; between players 7 and j, where we assume that G;; and G;
refer to the same game, yet in the first (second) case from i’s (from j’s) perspective.
The respective sets of bilateral strategies for players ¢ and j in G;; will be denoted
by S;; and Sj;. Similarly, payoff functions for players ¢ and j in G;; will be denoted
by w;; : Sij x S;; — R and uj; : Sj X S;; — R, respectively. Note that the first
argument in a bilateral payoff function wu;; always refers to player i’s strategy. E.g.,
in the expression wug (S21, $12), strategy s9; is 2’s bilateral strategy vis-a-vis player 1,

and s is 1’s bilateral strategy vis-a-vis player 2.

Figure 1. A network game.

0Finiteness of the network seems essential for the convergence of fictitious play. However, we
have not looked specifically into this issue. Blume (1993) studies the strategic interaction of players
that are located on an infinite lattice. Morris (2000) considers best-response dynamics in locally
finite networks of coordination games.

'While the network structure (V, E) is exogenous, our set-up is consistent with the assumption
that players strategically choose a subset of their neighbors as (potential) partners (see, e.g., Jackson,
2005). Along these lines, the dynamic evolution of a network is subsumed as well.

6
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Let N(i) ={j: (i,7) € E} denote the set of player i’s neighbors. Figure 1 shows
a network with three players, each of them interacting with two neighbors. As usual,
the number of neighbors of a player corresponds to the player’s degree as a node in
the network of interactions. In the example, the network is complete, but this is not
assumed.'? Let @ # X; C Xje N () S;; denote the set of multilateral strategies of
player ¢ (defense policies, trade quotas, promotional strategies, prices, invitation or
acceptance of friendship, etc.).

For a given multilateral strategy x; € X; of player i, we denote by 0;;(z;) = s;; €
S;; the corresponding bilateral strategy vis-a-vis player j. Going over all neighbors of
player 7, it becomes clear that any multilateral strategy x; € X; may be considered as a
vector of bilateral strategies x; = {s;;}jene) = {04(%:) }jen)- It is important to note

that we allow for X; C X ) Sij, which is the interesting case in most applications.

JEN(
For example, there could be budget constraints, limited resources (e.g., planes in a
military conflict), or constraints regarding price coherence across platforms.

An important special case arises if bilateral and multilateral strategy spaces coin-

cide, i.e., if 0;; defines a one-to-one correspondence X; ~ S;; for any ¢ € V' and any

v j € N(i). In that case, player i’s multilateral strategy x; € X; implements the same

18

19

20

21

compound strategy x; ~ s;; in each bilateral game with neighbor j € N(i), so that
X, corresponds to the diagonal in Xj eN () S;;. Settings along these lines have been
considered, in particular, by Sela (1999) and Cai et al. (2016), and will also be used

in our examples. Clearly, our set-up is no less general than those settings.

12We shall use standard terminology of graph theory (see, e.g., Bollobds, 2013). Thus, a network
(V,E) is complete if N(i) = V\{i} for all i € V; it is acyclic when there is no finite sequence of
pairwise distinct players 4y, ...,4,, € V with k > 3 such that (i1,i2) € E, (ia,i3) € E,..., (ix—1,%x) € E,
and (ix,i1) € E; a network is star-shaped if there is a player i € V such that N (i) = V\{i} and
N(j) = {i} for any j € V\{i}; finally, a network is connected if, for any i,j € V with ¢ # j, there is
a finite sequence i1,19,...,4, € V with ¢y = ¢ and i, = j such that (i1,i2) € E, (i2,i3) € E,..., and
(’L‘,{,hi,{) € FE.
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In an n-player network game G, each player i € {1,...,n} chooses a multilateral

strategy x; € X;, and receives payoff

wi(as, w3) = wilzg, ang) = Y (o), 05i(5)), (1)

JEN(i)

where x_; € X_; = X i X, specifies a multilateral strategy for every player j # i
different from player i, while zy@) = {#;}jenve € Xne = XjeN(Z.) X, specifies a
multilateral strategy for every neighbor j € N(i). Reflecting the local nature of
interaction and payoffs, it will be assumed below that each player ¢ forms a belief
about xy(; only, rather than about x_;. While this assumption is not required for
our results, it may be considered somewhat more plausible in a learning context.
Finally, let X = X ?:1 X; denote the set of multilateral strategy profiles in G.

We denote by A(X;) the set of player i’s mixed multilateral strategies. Thus,
any p; € A(X;) is a (column) vector representing a probability distribution on Xj.
Payoff functions extend to mixed multilateral strategies in the usual way. Specifically,
if u,; € Xj i A(Xj;) is a profile of mixed strategies for all players except player i,
and if uye € Xje N i) A(X;) denotes the resulting profile of mixed strategies for
the neighbors of player i, then player i’s expected payoff from the mixed strategy
pi € A(X;) is given by wi(p, p—i) = Elui(wi, v-3)] = wi(pi, i) = Elui(wi, )]s
where the expectations are taken with respect to (y;, p1—;) and (i, fin(s)), respectively.
Player ¢’s mixed best-response correspondence MBR; assigns to any profile png) €
X jen@ A(X;) the set of mixed strategies pj € A(X;) such that (4, png)) =
max,,ca(x,) Ui(fi, ngy)- Further, the mixed best-response correspondence MBR of
the network game G assigns to any profile p = (1, ..., 1) € X ?:1 A(X;) the Carte-
sian product MBR(u) = X | MBR, (un)). Since strategy spaces are finite, a mixed-
strategy Nash equilibrium p* = (u3, ..., 1), i.e., a fixed point of MBR, exists by Nash’s

theorem.
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2.2 Continuous-time fictitious play with independent beliefs

We start by considering the learning process in continuous time (Brown, 1951; Rosen-
miiller, 1971). Moreover, we will initially assume that beliefs formed by a player are
independent across neighbors, so that empirical frequencies are accounted for as mar-
ginal distributions only. Note that this latter assumption is consistent with a common
interpretation of fictitious play, according to which players take it as given that their
opponents adhere to some independently chosen mixed strategy. Both assumptions
will be relaxed in later sections of this paper.

Let m : [0,00) — A(X;) x ... x A(X,,) be a measurable path specifying, for any
point in time 7 > 0 and for any player ¢ € {1,...,n}, a mixed strategy m;(7) € A(X;).
As time is continuous, independent averaging over time amounts to integrating the
components of m over a non-degenerate interval. Consequently, the (continuous-time)
independent average « : (0,00) — A(X7) X ... x A(X,,) of the path m is defined, for

any time 7 > 0 and for any player i € {1,...,n}, by the belief
— ]‘ T / /
a(1T) = ai(,m) = = [ my(7)dr' € A(X)). (2)
T Jo
We will use the following definition of continuous-time fictitious play.

Definition 1. (CTFP) A continuous-time fictitious play (with independent beliefs)
is a measurable mapping m : [0,00) — X A(X;) such that m(t) € MBR(a(r))

for all > 1.

Thus, Definition 1 requires optimality at any point in time 7 > 1, whereas the closely

related notion of CTFP1 used by Harris (1998) demands optimality at almost any

point in time.!3

13A formal definition of CTFP1 is provided in Appendix A. Which definition one is using is, to
our understanding, a matter of taste. E.g., Ostrovski and van Strien (2014) use CTFP for n = 2
players. In any case, all of our results remain valid when CTFP is replaced by CTFP1.

9
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The following lemma assures us of the existence of a CTFP learning process.
Lemma 1. A CTFP exists.

Proof. By Lemma A.1 in the Appendix, a measurable path m : [0,00) — X ?:1 A(Xy)
exists such that m(7) € MBR(a(7,m)) for all 7 € [1,00)\N, where N’ C R is a set
of measure zero. We construct a modified path m : [0, 00) — X, A(X;) by letting
m(7) = m(7) for any T € [0,00)\N, and by choosing a mixed best response m(7) €
MBR(«(7,m)) for any 7 € N. Then, clearly, a(r,m) = «a(r,m) for any 7 > 1, so

that m(7) € MBR(a(r,m)) for any 7 > 1. The claim follows. [

The proof is based upon an existence result of Harris (1998) for CTFP1 paths.!4
The CTFP1 path is modified by replacing any suboptimal mixed best response by an
optimal mixed best response. Since the original path is changed on a set of measure
zero, averages stay the same, and the resulting path is a continuous-time fictitious
play according to Definition 1.

Next, we define convergence of CTFP in a given network game GG. Recall that,
for an arbitrary measurable path m : [0,00) — A(X;) x ... x A(X,,), the independent
average 7 +— «(7) = a(1,m) is a continuous path in the space of mixed strategy
profiles, A(X7) x ... x A(X,,). Denote by .A(m) the set of all accumulation points of
a(.,m)."> Convergence in continuous time is then defined by the requirement that

A(m) is a subset of the set of Nash equilibria of G.

Definition 2. A path m is said to converge to the set of Nash equilibria if every limit

distribution p* € A(m) is a Nash equilibrium in G.

4 For a formal statement, see Appendix A.

5Thus, A(m) consists of all strategy profiles that are limit points of some convergent sequence of
independent averages, {a(74,m)} 2, where {7,}22 is any sequence in [, 00) such that lim, ... 7, =
0o. Because the set of mixed strategy profiles A(X7) x ... x A(X,,) is compact, there will be at least
one such limit point, i.e., A(m) # @.

10
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The reader is cautioned that convergence is to a set where all points are Nash equi-
libria, meaning that the trajectory of the CTFP dynamics might not converge to a
specific Nash equilibrium. Only if the Nash equilibrium is unique, convergence im-
plies that the trajectory will converge to a single point. We will say that G has the
continuous-time fictitious-play property if any CTFP in G converges to the set of
Nash equilibria.

It should be noted at this point that a network player that optimizes simultane-
ously against several opponents behaves differently from an unconstrained player in
a bilateral game. Indeed, as pointed out by Sela (1999, Ex. 4 & 6), the fictitious-play
property in the bilateral games (regardless of whether it holds in continuous or discrete
time) is not generally informative about the corresponding property in the network
game. Thus, even if two bilateral games have the fictitious-play property, this need
not be the case for the network game (potentially after eliminating weakly dominated
strategies). Conversely, if neither of the bilateral games possesses the fictitious-play

property, the network game may still possess the fictitious-play property.

3. Zero-sum networks

By a zero-sum network, we mean a network game G that is zero-sum as an n-person
game, i.e., a network game in which u; + ... + u,, = 0. Clearly, if each bilateral
game G;; in a given network is two-person zero-sum, i.e., if u;; + u;; = 0 for any
i,j €{1,...,n} with j # ¢, then the network game G is an n-person zero-sum game.
However, the converse is not generally true. Moreover, even if payoffs are given in
the n-person normal form, there are efficient ways to check if the game is a zero-sum

network.!6

16Tn the literature, zero-sum networks are known as zero-sum polymatriz games or separable zero-
sum multiplayer games. For additional background and discussion, see Bregman and Fokin (1987,
1998), Daskalakis and Papadimitriou (2009), Cai and Daskalakis (2011), and Cai et al. (2016).

11



1 The following result is the first main result of the present paper.
> Proposition 1. Any zero-sum network G has the C'TFP property.

3 Proof. For an arbitrary profile of mixed strategies p = (g1, ..., ttn) € A(X7) X ... X

+ A(X,), we define the Lyapunov function

= Z max {uz %,MN( )) - ui(,uiv MN(z‘))} s (3)

zi€X;
s where pin) = {/4j}jen@) denotes the restriction of u to the neighbors of player i. As
s a direct consequence of the definition, £(x) > 0. Further, given that G is an n-person
7 zero-sum game, we may rewrite the Lyapunov function as

0 =3 { (e o)) = um@)} 0

i=1

= (Zl max i (3, (o () ) Zl wi (fhis 1A () (5)

J/

=0

= Z max u; fL'l, MN(@)) (6)

T, €X;

s Take a CTFP path m : [0,00) — A(X;) X ... x A(X,,), and let «(7) = a(7, m) denote
o the independent average at some point in time 7 > 1. Then, because m;(7) is a mixed

1 best response to ay;)(7) for i € {1,...,n}, and because interactions are bilateral,
= wi(mi(7), ang(1)) (7)
i=1
= D uilmi(r), (7)) (8)

i=1 jeN(i)
_Z Z mi(T) - Aijoy(T), (9)
=1 jeN(i)

1 where A;; is the matrix of player i’s payoffs in the bilateral game G, i.e.,'”

!THere and in the sequel, the thick dot - denotes the scalar product between two vectors.

12
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pi = Aigpuy = i (s 1) (10)
Multiplying the expression for £(a(7)) found in (9) by 7, and subsequently using the
definition of o(7), yields

Z Z my(7) - Aij /OT m;(7")dr'. (11)

i=1jEN(i)

Consider now a player i € {1,...,n}, and some 7 € (1,7). Then, given that m;(7) is
a mixed best response to an()(7), we have

D @) Ayay(7) = Y mi(r) - Aijoy (7). (12)

JEN(3) JEN(3)

Adding up across players, and subsequently multiplying through with 7, one obtains

) > Z > mi(r) - Ay /0 ' m;(T')dr’. (13)

i=1jEN(3)

Subtracting inequality (13) from equation (11), one arrives at

rL(a(r)) — 7L(a Z S ma(r) - Ay /A "y () dr. (14)

i=1jEN (i)

We divide this inequality by 7 —7 > 0 and consider the limit for 7 — 7. Then, by the
fundamental theorem of calculus, the limit on the right-hand side exists for almost

any 7 > 1, in which case

lim sup TL(Q(T?_ — ZL < Z Z mi(7) » Ayym;(1) = 0. (15)

T—7,7<T = IJEN

Thus, the upper-left Dini derivative of 7L£(«(7)) is a.e. weakly negative. Since, in
addition, the mapping 7 +— 7L(a(7)) is continuous, this implies that 7L(a(7)) is
monotone decreasing (cf. Royden, 1988, p. 99). Hence, there is a constant C' > 0 such
that L(a(7)) < C/7 for any 7 > 1. Noting that the individual terms of the Lyapunov
function (3) are all positive, we therefore obtain for any player i € {1,...,n} and for

any pure strategy x; € X; that

(r > 1). (16)

2Q

u; (5, QN () (7)) — uiai(7), QN (1) (7)) <
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Take now any accumulation point p* € A(m) of the path «(.). Then, there ex-
ists a sequence {7,}22; in [I,00) such that lim, .., 7, = oo and lim, .., a(7;) = p*.

Evaluating (16) at 7 = 7,, and considering the limit for ¢ — oo, shows that

wi(i, v y) — wilps s ) <0, (17)

i.e., z; is not a profitable deviation for player i. Since the inequality holds for any
i€ {1l,...,n}and any z; € X;, the strategy profile u* is necessarily a Nash equilibrium.

This completes the proof. [J

Thus, the convergence result for two-person zero-sum games extends to zero-sum
networks in a rather straightforward way. It may be noted that Proposition 1, in
particular, provides a proof of existence of a Nash equilibrium in the considered class
of n-person games.!®

Apart from a minor modification (see Appendix C for details), the proof presented
above follows the literature by combining the Lyapunov method with an envelope ar-
gument (Brown, 1951; Hofbauer, 1995; Harris, 1998; Berger, 2006; Hofbauer and
Sorin, 2006; Hofbauer and Sandholm, 2009). Intuitively, £(x) measures each player’s
scope for individual improvement relative to u, and aggregates the result across all n
players in the network. Then, as equation (11) shows, the product 7L(a(7)) corre-
sponds to the total (across all players in the network) of the maxima over “cumulative
payoffs.” However, the network game is zero-sum, so that the sum of instantaneous
19

payoffs vanishes. Therefore, 7L£(a(7)) cannot increase in 7.

Regarding the rate of convergence, we mention that a minor refinement of the proof

18 However, in contrast to the case of two-person zero-sum games, this observation does not imply
a minmax theorem for zero-sum networks. For a generalization of the minmax theorem to zero-sum
networks, the reader is referred to Cai et al. (2016).

19 An alternative way to establish Proposition 1 would involve showing that any zero-sum network
(considered as a population game with unit-sized populations) is stable in the sense of Hofbauer and
Sandholm (2009). We are grateful for Josef Hofbauer for pointing this connection out to us.
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shows that, as in the case of two-person zero-sum games considered by Harris (1998),
the rate of convergence in payoffs, i.e., the rate by which the Lyapunov function

approaches zero, is precisely 1/7.
Corollary 1. The rate of convergence of CTFP in any zero-sum network is 1/7.

Proof. It suffices to note that, while inequality (14) holds likewise for any 7 € (7, 00),
the direction of the inequality is reversed when dividing by 7 — 7 < 0. Considering
then the lower-right Dini derivative, the mapping 7 — 7L(«(7)) is seen to be not

only monotone decreasing, but also monotone increasing, hence constant. [

The observation that the rate of convergence does not depend on the size of the
network may be surprising. However, it should be noted that convergence is measured
here on the aggregate level. Thus, for a large network, the value of the Lyapunov
function provides little information about the scope of improvement that is feasible
for an individual player. Therefore, it might indeed take longer in a larger network
to reach, say, an e-equilibrium.

One might conjecture that the zero-sum property alone is sufficient to guarantee
convergence of CTFP also in n-person games with n > 3. However, as a straightfor-
ward adaption of Shapley’s (1964) example illustrates, this is not the case. IL.e., there

are multiplayer zero-sum games in which CTFP need not converge.

Example 1. (Three-person zero-sum game) Consider the following game G*

between three players:2

20Here and elsewhere in the paper, payoff vectors are arranged diagonally in each box, starting
with player 1’s payoff in the respective upper-left corner.
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11

x3=0
x2=1L x2=M x2=R
1 0 0
x1=T 0 0 1
1 0 -1
0 1 0
x1=M 1 0 0
1 -1 0
0 0 1
x1=B 0 1 0
0 -1 -1

Figure 2. The game G*.

In G*, player 1 and player 2 each have three pure strategies, whereas player 3 has just
one pure strategy. Therefore, to see what happens in equilibrium or under fictitious
play, player 3 may be safely ignored. But with player 3 eliminated from the game,
the two-person game between players 1 and 2 is of the Shapley (1964) type, so that

nonconvergence obtains.?!

Example 1 shows that the network assumption in Proposition 1 cannot be easily
dropped. Actually, the example shows a bit more, namely that CTFP need not
converge even in a three-person zero-sum game with bilinear payoffs. To see the point,
note that the payoff functions in the mixed extension of G! are indeed bilinear. E.g.,

player 3’s payoff reads

pr{z; = T}pr{zs = L} + pr{z; = M}pr{z, =L}
ug = (—=1) x | + pr{z; = M}pr{zs = M} 4+ pr{z; = B}pr{zo =M} |. (18)
+ pr{z, = T}pr{z, = R} + pr{z: = B}pr{z, = R}

Thus, to obtain the conclusion of Proposition 1, it does not in general suffice to

21That conclusion does not depend on the fact that player 3 has only one strategy. In fact,
we have constructed (details omitted) an example of a 2 x 2 x 2 zero-sum game with a Shapley
hexagon, similar to the three-person non-zero-sum example of Jordan (1993). On a related note, we
conjecture that Example 1 as well as the later examples of the present paper could be made robust
by introducing additional strategies for all players.

16



10

11

12

13

14

15

assume that payoffs may be represented as a sum of bilinear terms.?
While the network assumption in Proposition 1 cannot be easily dropped, the
zero-sum assumption may be relaxed to a certain extent for convergence in network

games, as will be discussed in the next section.

4. Additional classes of network games

4.1 Conflicts

A bilateral game G;; will be called a conflict if there exist valuations v;; > 0 and
vj; > 0, success functions p;; : S;; x S;; — [0,1] and pj; : Sj; x Si; — [0, 1], as well as

cost functions ¢;; : S;; — R and ¢j; : S;; — R such that

wij(8ij, i) = Pij(Sij 85i)vij — Cij (i), (19)
wji(Sjis Si) = Pyi(Sjis $i7)vji — Cjil8ji) (20)

and
i (8ij, 85i) + Dji(sji, 8i5) = 1 (21)

hold for any s;; € S;; and s;; € Sj;. Examples include discrete variants of probabilistic
contests (Tullock, 1980; Hirshleifer, 1989; Lazear and Rosen, 1981), the first-price all-
pay auction (Baye et al., 1996), and Colonel Blotto games (Roberson, 2006).2*

A network game G will be called a conflict network if the bilateral game G;; is

a conflict for each pair (i,7) € E. We will say that a conflict network has pairwise

22To resolve the apparent contradiction, it suffices to note that in a network game, any bilinear
term arising in wg would have to multiply a probability of a pure strategy for player 3 with a
probability of a pure strategy for another player. In relationship (18), however, us contains bilinear
terms that combine a probability of a pure strategy for player 1 with a probability of a pure strategy
for player 2, which is inconsistent with the definition of a network game. We are grateful to one of
the anonymous reviewers for hinting towards this distinction.

23The class of conflicts defined above corresponds precisely to the class of strategically zero-sum
games (Moulin and Vial, 1978). However, we will use the terminology of conflict because it is more
suggestive and because it allows making an important distinction (homogeneous vs. heterogeneous
valuations) that is absent from the theory of strategically zero-sum games but crucially needed
below.
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homogeneous valuations if valuations of two players coincide in any pairwise conflict,
i.e., if v;; = vj; for any (i, j) € E. An example is Franke and Oztiirk’s (2015) transfer
network where the net valuations of winning a conflict are assumed identical across
players. If valuations are not pairwise homogeneous, we will (somewhat loosely) say
that the conflict network exhibits heterogeneous valuations.

Proposition 1 can be extended to these additional classes of games as follows.

Proposition 2. Let G be either (i) a conflict network with pairwise homogeneous

valuations, or (ii) an acyclic conflict network. Then, G has the CTFP property.

Proof. (i) Starting from the conflict network G, we construct another network game
G on the same graph and with identical strategy sets by letting payoffs in the bilateral

game éij be given by

~ Vi
Uij(ij, 85i) = wij(Sij, Sji) — 7] + ¢ji(8i)- (22)

Then, clearly, player i’s payoff function in G reads
Ui, ang) = Y Tiloi(x:), 05i(x;)) (23)
JEN(3)

= ulwoeno) = 3 {5 - enlou@m) (24)

JEN(?)
which shows that G is best-response equivalent in mixed strategies to G.2* We claim

that each bilateral game CNJU» is two-person zero-sum. Indeed, for any pair (i,7) € E,

using (19-21) and v;; = v;;, we have

24We call two network games G and G best-response equivalent in mized strategies (Monderer and
Shapley, 1996b; Morris and Ui, 2004) if for any ¢ € {1,...,n} and any puy@) € A(Xn()), we have
arg max,,, e A(x,) Wi(fi, N () = argmax,, ea(x,) Wik, n()). Because of the network structure,
it actually suffices to check the condition for any py) € XjeN(i) A(Xj), rather than for any
NGy € A(Xn@)) (cf. Section 6).
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Uij (Sij» $ji) + Uji(Sjir Si5)

= wi;(ij, 8ji) — % + ¢ji(s50) + wji(sji, si5) — % + cij(si5) (25)
= pij(Sij, Sji)vig — cij(si5) — % + ¢ji(sji)

+ pji(8jis 8i5)vji — Cil85i) — % + cij(sig) (26)
=0, (27)

which proves the claim. As a result, G is a zero-sum network. By Proposition 1,
CTFP converges in G. Using the best-response equivalence in mixed strategies, both
the set of continuous-time fictitious plays and the set of Nash equilibria are the same
for G and G. Hence, CTFP converges also in G.

(11) Without loss of generality, the network may be assumed to be connected. The
set of players can then be partitioned into a finite number of subsets V4, V1, ..., V7,
where i € V, for ¢ € {0, ..., L} if and only if the graph-theoretic distance between

players 1 and ¢ equals ¢. See Figure 3 for illustration.

Vo Vi Va Va3

Figure 3. Partitioning the set of nodes in an acyclic network.
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Thus,

Vo = {1}7 (28)
Vi = N(1), and (29)
Vi={U,, NON (=2..L). (30)

We will describe an iterative construction that transforms the conflict network with
bilateral payoff function u;; and heterogeneous valuations v;; into a conflict network
with bilateral payoff functions u;; and homogeneous valuations v;;. For this, we
initialize the iteration by letting uy; = uy; and vy; = vy; for any neighbor j € N(1).
We start now with ¢ = 1 and consider some player j € V,. Since the network is
acyclic, there is precisely one player i € V,_; such that j € N(i). We rescale player

J’s payoff function wj; in her relationship with any neighbor £ € N(j) by letting

R s
ujk(sjka Skj) =—. Ujk(ski7 Sik), (31)
Uji
so that player j’s valuation becomes
R s

Je

Since the factor (v;;/v;;) does not depend on the neighbor k£ € N(j), such rescaling
does not affect player j’s multilateral best-response correspondence. Moreover, in
the special case k = i, the resulting bilateral game @Zj (with payoff functions u;; for
player i and uj; for player j) is a conflict with homogeneous valuations, since vj; = vj;
by equation (32). Once this is accomplished for any j € Vj, the running index ¢ is
incremented, and the rescaling procedure repeated. After the iteration has reached
¢ = L, we end up with a conflict network G with pairwise homogeneous valuations
that is best-response equivalent in mixed strategies to G. Convergence of CTFP

follows, therefore, from part (i). O
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The intuition is as follows. If valuations are homogeneous, then each bilateral game

%5 Suppose that the cost

is essentially a constant-sum game with costly strategies.
of a player in any bilateral conflict is not lost, but reaches the other player as a
subsidy. Then, as the size of the subsidy does not depend on the player’s choice
of strategy, her best-response correspondence remains unaffected. However, if the
subsidy is implemented in any bilateral conflict, the network game becomes constant-
sum, and we are done. If valuations are heterogeneous, and the underlying network
structure is acyclic, then the conflict network can be transformed into a conflict
network with pairwise homogeneous valuations by a simple iteration that starts at
player 1 and works its way through the tree, where in each step, valuations and cost
functions of a new set of players are rescaled so as to render the backward-looking
conflict homogeneous.

However, rescaling does not work in general conflict networks. Indeed, as the fol-

lowing example illustrates, fictitious play need not converge in cyclic conflict networks

with heterogeneous valuations.

(00,1)e,_

0.50 Pr(z3 = H)

0.25

0.25

0.50 :
Pr(z, = H) *7 : 0.50
(1,0,0) 0.25 -
Pr(zy = H)

Figure 4. Fictitious play need not converge in a network of conflicts.

25 This useful interpretation is borrowed from Ben-Sasson et al. (2007).
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Example 2. (Network of conflicts) Suppose there are three players i = 1,2, 3,
where X; = Xy = X3 = {IL,H}. The network structure is a triangle. In the network
game G2, each bilateral game is a conflict with heterogeneous valuations. Specifically,

one assuies

Vii+1 = 6, Vii—1 = 3, (33)
Cz’,z’+1(L) = ci,i71<L) =0, Ci,iJrl(H) = Ci,i71<H) =1 (34)
pm+1(H; L) = %, Pz’,i+1(L7 H) = %7 pi,i+1(L7L) = pi,i+1<H> H) = %; (35)

where i 4+ 1 refers to player 1 if i = 3, and similarly, ¢ — 1 refers to player 3 if + = 1.
Denote by r; = pr{z; = H} the probability that player i uses strategy H. There is
a unique Nash equilibrium (r},73,73) = (0,0,0).2° Moreover, fictitious play need
not converge to equilibrium, but may follow a triangle-shaped path that runs in a

round-robin fashion through the points

P11 = (%7 %7 %) — P2 = (%a %9 %) — P3 = (%7 %7 %) ARREY) (36)
as illustrated in Figure 4. On the linear segment from p; to ps, for instance, players
1 and 2 each choose L, while player 3 chooses H, so that the process moves in the
direction of the corner point (0,0, 1). A similar logic applies to the other two segments

of the triangle. Thus, the dynamic conflict does not settle down, which shows that

the assumption of homogeneous valuations cannot be dropped in general.

4.2 Potential games
We introduce notions of increasing flexibility first for bilateral games and then for
network games. A bilateral game G;; is said to possess identical payoff functions

if uij<5ij75ji> = uji<5ji;8ij) for all Sij € Sz'j and Sji € Sﬂ A bilateral game Gij is

26S0 all players would choose the effort level L. For proofs, see Appendix B.
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an exact potential game (Monderer and Shapley, 1996a) if there exists a potential

function P;; : S;; x Sj; — R such that

Uij(sija 3ji) - Uij(é\ij, sz') = Pij<3ija Sji) - Pij(gija 3ji)> (37)
wji(Sjir Si) = W5i(Sji, 8i5) = Pij(sijs 851) — Pij (s, 554), (38)

for all s;;,5;; € S;; and sj;,5;; € Sj. Next, a bilateral game G,; is a weighted
potential game (Monderer and Shapley, 1996a) if there exists a potential function

Pi; : Sij x S;i — R as well as weights w;; > 0 and wj; > 0 such that

Wij(Sij, 85i) — Wij(Sij, 85i) = wij { Pij (545, 55:) — Pij(8i, 85i) } 5 (39)
wji(Sji, 8i5) — Wji(Sjis 8ij) = wii { Pij (545, 556) — Pij(8i5,55i) } 5 (40)

for all s;;,5;; € Si; and s;;,5;; € Sj;.27 Potential games and weighted potential games
belong to the class of games with identical interests (Monderer and Shapley, 1996b),
i.e., they are best-response equivalent in mixed strategies to a game with identical
payoff functions.?® A network game G will be said to be an ezact potential network
if all bilateral games G;; are exact potential games. Finally, a network game G will
be referred to as a weighted potential network if all bilateral games G;; are weighted
potential games.

Cai and Daskalakis (2011) have shown that if all bilateral games in a network
have identical payoff functions then the network game admits an exact potential
(the welfare function). The following result applies their reasoning, but also offers

some extensions because bilateral games may here be exact potential games or even

2TThe following observation shows that the notation need not lead to confusion: Let Gij be a
weighted potential game with potential P;; and weight w;; for player ¢ and weight wj; for player j.
Define a potential Pj; : Sj; X S;j — R by Pj;(sj, 8i5) = Pij(sij,8:). Then, the bilateral game Gj;
(i.e., the game G;; with the roles of players ¢ and j exchanged) is a weighted potential game with
potential Pj; and weight wj; for player j and weight w;; for player i.

28Thus, games with identical interests relate to games with identical payoff functions in the same
way as strategically zero-sum games relate to zero-sum games.
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weighted potential games. We also use a slightly different proof. Specifically, we
construct the potential of the network game as the sum over all potentials rather
than as the sum over all payoff functions. Moreover, in the case of weighted potential

games, we employ a similar induction argument as in the proof of Proposition 2(ii).

Proposition 3. Let G be either (i) an exact potential network, or (ii) a weighted

potential network on an acyclic graph. Then, G has the CTFP property.

Proof. (i) Suppose that GG is an exact potential network. Since any bilateral game
Gi; is an exact potential game, there exists a potential function F;; : S;; x S;; — R
such that equations (37) and (38) hold for any s;;,5;; € S;; and s;;,5;; € Sj;. In
particular, by exchanging the roles of players i and j in equation (38) and comparing

with (37), we obtain

Pij(sijs sji) — Fij(8i, 85i) = Pji(sji, si5) — Py, Si5)- (41)
Consider now the aggregate potential P : X — R defined through

1
P(z) = 2 Z Pij(sijasji)a (42)
where s;; = 05(x;) € S;; and sj; = 0i(x;) € Sj;. It is claimed that P is an exact
potential for G. For this, fix a player i € {1,...,n}. Then, for any z; € X, 7; € X,
and x_; € X_;, writing 5;; = 0;(7;) € Sy, it is straightforward to check that
Uz‘($z’, x—z’) - Uz‘(@, x—z‘)

O D (i) — wig (3, 550)} (43)

JEN(i)
o > APi(sijr i) — Py(Sijr530)} (44)
JEN(i)

= % > APy(sis55) = PyGigrsi)} + Y {Piilsjirsis) — Palsji55)} o (45)

(3,5)EE (jR)eE
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= Y Pilsigisi)+ Y Piilsjisi)+ Y Pirlsjr: sij)

(i,j)EE (j,i)GE (],k)GE
JFiFk
1
—53 2 PiGusi)+ X Pulsisig)+ Y Pislsie i) (46)
(i,j)eE (Ji)eE (]7k)eE
JFiEk
= P(zi,x—) — P(Ti, 2-4). (47)

(42)
Hence, P is indeed an exact potential for the n-person game G. Therefore, from
Lemma A.2 in the Appendix, any CTFP1 converges to the set of Nash equilibria.
Since every CTFP is, in particular, a CTFP1, also any CTFP converges to the set of
Nash equilibria.

(i) From the weighted potential network G, an exact potential network G is
constructed as follows. We start by assigning players to subsets V4, V1, ..., V, according
to their distance ¢ from player 1, as in the proof of Proposition 2. Then, we initiate
an iteration by letting ¢ = 1. Consider any player j € V,, and recall that there
is precisely one player i € V,_; such that j € N(i). By assumption, the bilateral
game G; is a weighted potential game. Therefore, there exists a potential function
P S;; x S;; — R, as well as weights w;; > 0 and wj; > 0 such that (39) and (40)
hold for any s;;,5;; € S;; and sj;,5;; € S;;. Note that P;; may be chosen such that
w;; = 1. Given this normalization, we rescale all bilateral payoff functions of player
J by letting w;;, = u;,/wj;, for any k € N(j). Then, the bilateral game @Zj with
payoff functions u;; = u,; for player i and uj;; = uj;/wj; for player j is easily seen to
admit the exact potential P;;. Moreover, any bilateral game G, with k # ¢ remains
a weighted potential game when u;;, is replaced by w;;. All players j € V; are dealt
with in this fashion. Then, the index ¢ is incremented, and the iteration continued.

When the iteration ends at ¢ = L, the bilateral games G\i]‘ form an exact potential
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network G. Moreover, since each player’s payoff has merely been rescaled, G is best-
response equivalent in mixed strategies to the weighted potential network we started

from. Hence, invoking part (i), CTFP converges to the set of Nash equilibria. O

The intuition of the first part is simple. Because bilateral games possess exact poten-
tials, the aggregate potential reflects incentives precisely as the network game.? The
intuition of the second part is very similar to Proposition 2(ii).

Sela (1999, Prop. 12) has shown that a star-shaped network of generic weighted
potential two-by-two games is, when reduced to a two-person game, best-response
equivalent in mixed strategies to a game with identical payoff functions. This implies
the CTFP property. Proposition 3 shows that the “one-against-all” assumption, the
assumption on the number of strategies, and the genericity of payoffs may be dropped
without weakening the conclusion.

The following example shows that a general network consisting of weighted po-

tential games need not have the fictitious-play property.

Example 3. (Network of weighted potential games) Consider the following
game G® between three players i = 1,2, 3, each of them having two compound strate-

gies, i.e., X7 = Xy = X3 = {H,L}. Bilateral payoffs are specified in Figure 5.

Figure 5. A network of weighted potential games.

2 Extending the proof, one can easily convince oneself that arbitrary networks (i.e., hypergraphs)
of multiplayer exact potential games admit an exact potential.
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1 Thus, each player is involved in two coordination games, where for player 7, co-
> ordination with player ¢ — 1, is more valuable than coordination with player i + 1.3
3 Moreover, there is a twist in the coordination between players 1 and 3. The game
+ G admits a unique Nash equilibrium in which each player randomizes with equal
s probability over her two alternatives. However, CTFP runs indefinitely through the

s hexagonal cycle

. —p=(a,b,c) > pa=(1—-ca,b) —>p3=(1—-b1—c,a)— (48)

—p=1-a,1-b1—-¢c)—ps=(c,1—a,1=>b)—ps=(bc,1 —a)— ..

7 where (a,b,c) = (g, %, g), and the entries correspond to the respective probabilities of

s choosing H. Figure 6 shows a numerical fictitious-play path approaching the hexagon.

0.75

0.50 P1~(;1;3 = H)

0.25

0.25
0.50

Pr(zg = H)075

0.75

- 5
0.25 0.50

Pr(z, = H)
Figure 6. A network of weighted potential games without the CTFP property.

o In contrast to the case of zero-sum networks, we make no claims whatsoever regarding

10 the rate of convergence in networks of weighted potential games.3!

30We use the same notational conventions as in the previous example. Further, all proofs related
to Example 3 can be found in Appendix B.

3'However, a recent paper by Swenson and Kar (2017) might throw some light on this difficult
question.
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4.8 Two-by-two games
Finally, we consider two-by-two games, i.e., two-person games in which each player
has just two strategies.?? It will be recalled (e.g., Krishna and Sjostrom, 1997, Prop.
3) that any two-by-two game without weakly dominated or identical strategies is best-
response equivalent in mixed strategies to either a zero-sum game or to a game with
identical payoff functions. Miyasawa’s theorem is therefore customarily presented as
a corollary of the corresponding results for those classes of games. The approach will
be similar here.

A network game G will be called a network of strategically similar two-by-two
games if (i) X; has precisely two elements, for any ¢ € {1,...,n}, and (ii) either all
bilateral games G;; are conflicts with pairwise homogeneous valuations, or all bilateral

games G;; admit an exact potential.

Proposition 4. Let G be a network of strategically similar two-by-two games. Then,

G has the C'TFP property.
Proof. Immediate from Propositions 2 and 3. [J

Proposition 4 extends Miyasawa’s theorem to arbitrary network structures. As seen
above, the assumptions on the bilateral games can be relaxed if the underlying network
structure is acyclic. This implies, in particular, a related result by Sela (1999, Cor.
13) for star-shaped networks. However, Examples 2 and 3 show that it is not possible
to generalize Proposition 4 to arbitrary networks of strategically zero-sum games, nor

to arbitrary networks of weighted potential games.??

32Miyasawa (1961) has shown that (discrete-time) fictitious play converges in every two-by-two
game. That result was later seen to depend on a particular tie-breaking rule (Monderer and Sela,
1996). With generic payoffs, however, the theorem holds. For further discussion of this important
special case, see Metrick and Polak (1994), Monderer and Sela (1997), and Sela (1999).

33Gimilarly, it does not seem possible to obtain a general convergence result in mixed networks,
i.e., in networks where some bilateral games are zero-sum, while others reflect identical interests.
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5. Discrete-time fictitious play

While the continuous-time variant of fictitious play considered above is analytically
more convenient, there are reasons to be interested also in the discrete-time variant.
For instance, the first major result in the literature by Robinson (1951) concerned
the discrete-time process in two-person zero-sum games. It has often been suggested
that the two processes should behave similarly. This is also intuitive because the in-
cremental changes in the discrete-time process become smaller and smaller over time.
Harris (1998) has developed a very useful approach that, indeed, allows transferring
results for the continuous-time case to the discrete-time case. Below, we will use his
approach to extend some of our conclusions to the case of DTFP.3*

In contrast to the analysis so far, time progresses now in stages. At any given
stage t € Ng = {0,1,2,...}, each player i € {1,...,n} is assumed to choose a pure
multilateral strategy y;(t) € X;.3 We denote by ;(t) € A(X;) the Dirac measure
on X; that places all probability weight on y;(¢). Then, the empirical frequencies
of pure-strategy choices made by player i before stage t € N = {1,2,3, ...} may be

summarized in the discrete-time independent average

t—1

1 y
() = ad(t,u() = 7 St (19)
=0
Let a’(t) € A(X;) X ... x A(X,,) denote the (column) vector whose i-th entry is ad(t).

For any profile puy@) € X oy A(X;), we will write BR;(yun(;)) for the set of pure

strategies y; € X; such that the corresponding Dirac measure 3; € A(X;) satisfies ; €

34The idea is to make a change in the time scale, such that the differential inclusion defining the
continuous-time process becomes autonomous and, in fact, equivalent to the best-response popula-
tion dynamics, as in Gilboa and Matsui (1991) and Matsui (1992). Thereby, as detailed in Harris
(1998) and Hofbauer and Sorin (2006), it is feasible to exploit the near-convergence of a sufficiently
delayed discrete-time process. That method of proof extends to arbitrary finite n-person games in
which fictitious play converges uniformly across initial conditions (cf. Hofbauer, 1995, p. 23). It
follows from the proof of Proposition 1 that the class of zero-sum networks satisfies this condition.

35Tt can be checked that our results hold likewise, with essentially unchanged proofs, when DTFP
is defined in terms of mixed strategies.
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MBR; (s1n(;))- Further, for a profile of mixed strategies 1 = (11, ..., 1) € X 1_y A(X3),
let BR(p) = X . BRi(ing)-

Definition 3. (DTFP) A discrete-time fictitious play in the network game G is
a sequence of multilateral pure-strategy profiles y(.) = {y(t)}2, such that, for some
t* € N, it holds that y(t) € BR(a%(t,y(.))) for any t > t*.

Thus, in a DTFP y(.), there is a stage t* > 1 from which onwards players optimize
against historical averages of their neighbors’ past behavior. However, there is no
restriction on choices before stage t*.

For a given DTFP y(.) = {y(t)}:2,, the corresponding sequence of independent
averages {a?(t)}2°, defined in (49) is a sequence in A(X;) x ... x A(X,,). We denote

by A%(y(.)) the set of all accumulation points of {a?(t)}%2;.

Definition 4. A sequence of multilateral pure-strategy profiles y(.) = {y(t)}:2, is
said to converge to the set of Nash equilibria if every limit distribution p* € A%(y(.))

1s a Nash equilibrium in G.

In analogy to the continuous case, we will say that G has the discrete-time fictitious-
play property if any DTFP in G converges to the set of Nash equilibria. The following

result generalizes Robinson’s (1951) theorem to n-person zero-sum networks.
Proposition 5. Any zero-sum network G has the DTFP property.

Proof. The proof has three parts. It is shown first that, for any DTFP, the corre-
sponding process of discrete-time independent averages solves a particular difference
inclusion. Subsequently, we verify that the set of Nash equilibria in G is a global

uniform attractor’® of the best-response population dynamics (Gilboa and Matsui,

36See Appendix A for definitions and additional background.
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1991; Matsui, 1992). Finally, we apply an approximation result of Hofbauer and
Sorin (2006) to conclude that any accumulation point of the process of discrete-time
independent averages is a Nash equilibrium.

(i) Take a zero-sum network G and a DTFP process y(.) = {y(t)}:2, in G. Thus,
y(.) = {y(t)}2, is a sequence in X such that, for some t* € N, it holds that y(¢) €
BR(a’(t,y(.))) for any t > t*. Fix some player i € {1,...,n} and some ¢ > ¢*. Then,

by simple algebraic manipulation,

ad(t+1) = t—i—Ll 3i(t') (50)
1 1L <«

= H—lyz(t) + 1 Z i(t') (51)

_ Lgi(t) + Lof?(t). (52)

Hence, recalling that ;(t) € MBR,-(a‘fV(Z.) (t)), the discrete-time process {a?(t)}22, of
independent averages is seen to solve the difference inclusion

d 1 d t d
a’(t+1) € —=MBR(a" (1)) + (1), (53)

for any ¢t > t*.
(i) Let Zg € X _, A(X;) denote the set of Nash equilibria in G. We claim that

Z¢ is a global uniform attractor of the differential inclusion
2 € MBR(z) — z. (54)

To see this, let ¢ > 0, and take some solution z of (54). Then, z : [0,00) —

X ?:1 A(X;) is an absolutely continuous mapping satisfying

0z(T)
or

€ MBR(z(7T)) — 2(7) (55)

at all points in time 7 € [0,00) at which z is differentiable. Let now 7 = exp(7),

and define the rescaled solution ¢ : [1,00) — X _, A(X;) associated with 2 by the
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relationship ((7) = 2(7). Then, clearly, 02(7)/0T = 7 - (9((7)/07). Using (55), we
get

0D) _ 7 KD | ((r) e MBR(C(7) (56)

at all 7 > 1 where ( is differentiable. Since ( is absolutely continuous, the set
N of points where ¢ is not differentiable has measure zero. Choose now a path
m: [0,00) — X A(X;) satisfying m(7) = ¢(1) for 7 € [0,1), m(7) = d(¢(7)) /0T
for 7 € [1,00)\N¢, and m(7) € MBR(((7)) for 7 € N;. Then, from equation (2), for

any i € {1,...,n} and any 7 > 1,
1 T
a;(T,m) = - {Q(l) —l—/ mi(T,)dT/} = Gi(7). (57)
1
Hence, from (56), we see that m(7) € MBR(«a(7,m)) for any 7 > 1. Thus, m is a

CTFP. By Corollary 1, L(«(7,m)) declines at rate 1 /7. Moreover, since £ is bounded,

there exists a constant C', independent of m, such that
C
L(a(r,m)) < — (r>1). (58)
T

To provoke a contradiction, suppose there is a sequence {7,}>°, in [0,00) with

lim, 0 7 = 00, and a sequence {z()}%  of solutions of (54), such that
C_Z(Z(K)G:fi)? ZG) > &€ (/{ S N)? (59)

where d(.,.) denotes the Hausdorff distance (see Appendix A for a definition). Let
7. = exp(7,), and denote by () the rescaled solution associated with z(*). Then,

from (57) and (58),
(k €N), (60)

By the compactness of A(X1)x...x A(X,,), the sequence {¢") (7))}, = {z¥)(F,)}>,

has a converging subsequence. Denote the limit by x*. By (60), and the continuity of
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L, we have L(p*) = 0. Hence, u* € Zg and, consequently, d(u*, Zg) = 0. However,

for some k large enough, d(z")(7,), u*) < ¢, so that via (59),

The contradiction shows that, indeed, Z¢ is a global uniform attractor of (54).
(iii) We have to show that y(.) = {y(t)}2, converges to the set of Nash equilibria.
For this, let u* € A%y(.)) be an accumulation point of {a?(¢,y(.))}2,. By part (i)

of the proof, the difference inclusion
P € Bi®(R) + (1 — 6P, (te N={1,2,...}), (62)
with 5, = 1/(t* + t) for t € N, admits the solution
P=at +t—1) (t € N). (63)

Moreover, by part (ii), Zg is a global uniform attractor of (54). Applying Lemma A.3
from the Appendix, it follows that, for any ¢ > 0, there exists t#(¢) € N such that, for
any t > t# (), we have d(P;, Z¢) < e. By assumption, p* is an accumulation point of
{a?(t)}32,, and consequently, also of the subsequence {P;}22,. Hence, d(u*, P;) < ¢
for infinitely many ¢. In particular, there exists o > t#(¢) such that d(u*, P,) < e.
Moreover, since d(Py,, Z¢) < € and Zg is compact, we find u** € Zg of G such that

d(P,,, ™) < e. Combining these observations, the triangle inequality implies

d(p", Zg) < d(u”, ™) (64)
S d(ﬂ*a Pto) + d(th M**) (65)
< 2e. (66)

Since this holds for any ¢ > 0, it follows that d(u*, Zg) = 0. But Zg; is compact.

Hence, u* € Zg, which proves the proposition. [J
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The result above extends Sela’s (1999, Prop. 7) result for star-shaped networks in
three ways. First, the restriction regarding the network structure is dropped. Second,
Proposition 5 imposes the zero-sum assumption only on the network, rather than on
each of the bilateral games. Finally, no assumptions regarding tie-breaking are used
here. In sum, it is feasible to address additional applications such as security games
(Cai et al., 2016) and, as has been seen, conflict networks.

As in the case of two-person zero-sum games, the transformation of the CTFP
process into a discrete-time process comes at a cost, which is the slower rate of con-
vergence. More specifically, the discrete-time process is known to “overshoot,” which
makes it generally hard to nail down its rate of convergence. For two-person zero-sum
games, Robinson’s proof allows deriving an upper bound on the rate of convergence
in payoffs (Shapiro, 1958). The resulting estimate is of order O(t~/(1#*2-2)) where
v; is the number of strategies for player i = 1,2.3" Given the lack of a direct extension
of Robinson’s proof to zero-sum networks, however, that upper bound is not easily
generalized to zero-sum networks. Improving on Shapiro’s upper bound, Karlin’s
strong conjecture says (or more precisely, said) that DTFP converges in payoffs at
rate O(t~/?) in two-person zero-sum games, regardless of the number of strategies.
Daskalakis and Pan (2014) have recently disproved that conjecture, showing that the
rate of convergence in an asymmetric two-person zero-sum game in which both play-
ers have the same number of strategies v may be as low as O(t~/¥). That lower
bound holds, obviously, also for zero-sum networks.3®

The “Rosy Theorem” of Monderer et al. (1997, Th. A) says that a player’s ex-

pected payoff in DTFP at any given stage is weakly higher than her average payoff

37If the game is symmetric, and consequently both players have the same number of strategies
V) = vy = v, then the upper bound may be sharpened to O(t—'/(*=1)),
38 For related work, see Gjerstad (1996), Conitzer (2009), and Brandt et al. (2013).
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experience. Using Robinson’s theorem, this result implies that every DTFP in a
two-person zero-sum game is belief-affirming, which means that, in the limit, the gap
between expected payoffs at any given stage and the average payoff experience van-
ishes for each player. This is just the first part of Monderer et al. (1997, Th. B).

Using Proposition 5, we can derive the following extension.

Corollary 2. Let G be a zero-sum network. Then, any DTFP process {y(t)}2, in
G is belief-affirming.

Proof. Let a?(.) denote, as before, the independent discrete-time average of {y()}22,.
As has been shown in the proof of Proposition 5, lim,_ .., d(a%(t), Zg) = 0. Therefore,
lim; o, £L(a(t)) = 0. Using (4)-(6), this implies

tlirglo {Z;ne%)(( wi(x;, aN( )(t))} = 0. (67)

By the “Rosy Theorem,”

a1, 0k (1) = 75 _ui(y(0)), (63)

T, €X;
t'=0

for any ¢ € N and any player i € {1, ...,n}. Hence,

lim sup { {i?ea% w;(;, aN( } Zuz } (69)

t—o0

any i € {1,...,n}. Suppose now that {y(t)}?2, is not belief-affirming. Then, for some
player, inequality (69) holds strictly. Adding up across players, and exploiting the

zero-sum property, this yields

lim sup { max u;(x;, aﬁlv(z) (t))} > 0, (70)

t—00 r;€X;

in conflict with relationship (67). This proves the claim. [J
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However, there is an important difference to the case of two-person zero-sum games,
which is that Nash equilibrium payoffs are not necessarily unique in zero-sum networks
(cf. Cai et al., 2016). Hence, the second part of Monderer et al. (1997, Th. B), which
states an equality between a player’s long-run payoff experience and the value of the
game, cannot be easily generalized to zero-sum networks.

Cai and Daskalakis (2011) have shown that, if every node in a network game
plays a no-regret sequence of mixed strategies over sufficiently many stages, then
the resulting frequency distributions over pure strategies form an e-equilibrium. By
definition, no-regret is a property of DTFP that is less stringent than being belief-
affirming. Specifically, under no-regret behavior, a player’s expected payoff against
past play is asymptotically weakly below her average payoff experience, while in a
belief-affirming DTFP process, a player’s expected payoff is asymptotically equal to
her average payoff experience. Therefore, Monderer et al. (1997, Th. B) implies that
DTFP in two-person zero-sum games has no-regret. Given Corollary 2, the same
conclusion holds for DTFP in zero-sum networks.’

The following should now be immediate.

Corollary 3. Let G be a network game that satisfies the assumptions of any of the
Propositions 1 through 4. Then, any DTFP process in G converges to the set of Nash

equilibria.

Proof. For zero-sum networks, the claim follows directly from Proposition 5. Since
conflict networks with pairwise homogeneous valuations and acyclic conflict networks

are best-response equivalent in mixed strategies to zero-sum networks, the claim holds

390ne may even go one step further. Using the “Rosy Theorem,” we see that DTFP exhibits
no-regret if and only if it is belief-affirming. This observation might help to see that, despite the
obvious similarity in the conclusion, there is no simple way of deducing Proposition 5 from existing
results on the convergence of no-regret behavior.
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also for these classes of games. Next, it was shown above that networks of exact
potential games admit an exact potential. In this case, therefore, the claim follows
from Monderer and Shapley (1996b, Th. A).%% Finally, to deal with acyclic networks
of weighted potential games, it suffices to recall that any such network game is best-

response equivalent in mixed strategies to a network of exact potential games. [J

6. The case of joint beliefs
So far, we assumed that players’ beliefs are independent across neighbors. In a general
network game, however, a player might observe correlations between the behavior of

41 Tn this section, we will explore the implications of assuming that

her neighbors.
players take account of such correlations.

Let fing) € A(Xn()) be player i’s joint belief over strategies chosen by i’s neigh-
bors, where the tilde indicates that correlation is feasible. Player i’s expected pay-
off from a mixed strategy p; € A(X;) is written as u;(f, fin)) = Elui(xi, n))),
where the expectation is taken with respect to (i, fin(;)). Player i’s mixed best-
response correspondence MBR; extends as usual to joint beliefs, finiy € A(Xng)),
in the sense that MBR;(fin()) is the set of mixed strategies pf € A(X;) such that
wi(f17, finGy) = Max,,ea(x,) Ui(fi, fingy).  Similarly, the mixed best-response corre-
spondence MBR of the network game G extends to arbitrary probability distributions
fi € A(X) by letting MBR(z) = X ,_,MBR;(Jin(i)), where Jin(; denotes the marginal
of 1t on Xn(;). Let m : [0,00) — A(X7) x ... x A(X,,) be a measurable path specifying

each player i’s mixed strategy at any point in time 7 > 0. Then, the continuous-time

40To see this, note that our definition of convergence to equilibrium is equivalent to the one used
by Monderer and Shapley (1996b, pp. 260-261). Moreover, while their analysis formally restricts
attention to the case t* = 1, they mention that their convergence result holds more generally. Indeed,
their proof extends in a straightforward way to t* > 1.

4Indeed, correlation of the limit profile is a well-documented possibility (Young, 1993; Fudenberg
and Kreps, 1993; Jordan, 1993; Fudenberg and Levine, 1998).
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joint average a : (0,00) — A(X) of the path m is defined at time 7 > 0 as

a(t) =a(r,m) = /m (71)

where the integral is now taken in A(X) rather than for each player separately.

Similarly, if {y(t)}22, is a sequence in X, we define the discrete-time joint average &

as

T
L

al(t) = al(t, y(.)) = (t) (t=1,2,3,..), (72)

S

t

Il
o

where §(t') denotes the Dirac measure in A(X) that assigns all probability weight to

y(t'). The following definition of joint fictitious play should contain no surprises.

Definition 5. (C/T\F{P, ]ﬁlﬁ?) A continuous-time fictitious play with joint beliefs
is a measurable mapping m : [0,00) — X ._, A(X;) such that m(t) € MBR(a(r,m))
for any ™ > 1.2 Similarly, a discrete-time fictitious play with joint beliefs is a
sequence {y(t)}2, in X, X; such that, for some t* € N, it holds that y(t) €
BR(a‘(t,y(.))) for any t > t*.

Denote by A(m) and A%(y(.)), respectively, the set of all accumulation points of &(.)

and a?(.). The definition of convergence is adapted as follows.

Definition 6. We will say that the joint probability distribution p* € A(X) is an
observational equilibrium when each player i’s marginal distribution pf € A(X;) is
a mized best response to the marginal [y € A(Xn@)), i-e., when uz(ﬁ;“,ﬁ*j\,(l)) >
wipi, W) for any i € {1,...,n} and any p; € A(X;). We will further say that a

path m, or a sequence y(.), converges observationally to Nash if any p* € .»Zlv(m), or

s e Aly(.)), is an observational equilibrium.

42 Adapting the proof of Harris (1998), existence of CTFP can be verified for any n-person game.
For network games, however, existence follows more easily from the proof of Proposition 6 below.
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Thus, in an observational equilibrium, each player’s marginal optimizes against the
joint strategy profile. For example, any coarse correlated equilibrium in a zero-sum
network is an observational equilibrium, as follows from the analysis of Cai et al.
(2016). The corresponding notions of observational convergence require that any
accumulation point of the joint average of the fictitious-play path or sequence is an
observational equilibrium.

In the proof of the following result, we generalize an insight due to Sela (1999,

Lemma 1) to arbitrary networks, and apply it to the present situation.

Proposition 6. Let G be an arbitrary network game satisfying assumptions of any of

the Propositions 1 through 4. Then any CTFP, and likewise any DTFP, converges

observationally to Nash.

Proof. Let 1 € A(X) be a probability distribution over pure strategy profiles in
G, and let = (p1, ..., i) € A(X7) X ... X A(X,,) denote the corresponding profile
composed of marginal distributions. Then clearly, because interactions are bilateral,

and because expectations ignore correlations, expected payoffs satisfy

/%7 /~LN( Z uzj i, :uj (73)

JEN()
for any i € {1,...,n}. Therefore, MBR () = MBR(p). The claim follows. [

Intuitively, correlation is irrelevant for the best-response correspondence in a network
game G because all interactions are bilateral. As a consequence, a path m is a CTFP
if and only if it is a (Tﬁ, and a sequence y(.) = {y(t)}:2, is a DTFP if and only if
it is a DTFP. Therefore, in the considered classes of network games, fictitious play
with joint beliefs converges to the set of potentially correlated profiles in which each

player’s marginal distribution is a mixed best response to the marginal distribution,

taken jointly or independently, of her neighbors’ pure strategies.
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7. Concluding remarks

In this paper, we have identified new classes of network games in which fictitious play
processes converge to the set of Nash equilibria. In particular, the analysis has led to
simple conditions on bilateral payoffs and the network structure that are sufficient to
guarantee convergence of continuous-time fictitious play even when a player’s deci-
sions across bilateral games are interdependent. We have also constructed examples
of multiplayer games that show that these conditions cannot be easily relaxed.

Applications are manifold and include security games, conflict networks, and de-
centralized wireless channel selection, for instance. Moreover, the findings confirm
the intuition that equilibrium behavior in important types of social interaction can
be reached without assuming strong forms of economic rationality.

Regarding the discrete-time variant of fictitious play, our results entail an exten-
sion of Robinson’s (1951) classic result. This might serve as a basis for further analysis
and simulation exercises. But the derivation also provides an additional illustration of
the intimate relationship between the continuous-time and the discrete-time processes
that has been suggested in many studies.

Obviously, we did not address all open issues related to fictitious play in network
games. For instance, we did not examine stochastic fictitious play. It should be noted,
however, that the convergence of stochastic fictitious play follows directly from our
results for networks of exact potential games and, similarly, for acyclic networks
of weighted potential games. Moreover, it may be conjectured that the techniques
developed by Hofbauer and Sandholm (2002) apply also to the zero-sum networks
and conflict networks discussed in the present paper.

Last but not least, there is some recent work that digs deeply into the differen-

tial topology and projective geometry of fictitious-play paths in two-person zero-sum
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games (van Strien, 2011; Berger, 2012). Exploring the potentially interesting impli-
cations of such approaches for zero-sum networks remains, however, beyond the scope

of the present study.*?

Appendix A. Results from the literature used in the proofs

A.1 Existence of continuous-time fictitious play

Harris (1998, Sec. 3) defines fictitious play in continuous-time in a way that is some-
what more flexible than our definition. Specifically, he assumes optimizing behavior at
almost every point in time 7 > 1, while our Definition 1 assumes optimizing behavior

at every point in time 7 > 1.

Definition A.1 (Harris, 1998) A continuous-time fictitious play of the first kind
(CTFP1) is a measurable path m : [0,00) — X A(X;) with the property that

m(7) € MBR(a(1,m)) for all 7 € [1,00)\N, where N C R is a set of measure zero.

It is obvious from the definition that any CTFP, as defined in the body of the paper,
is in particular a CTFP1. As noted by Harris (1998), general results from the theory
of differential inclusions imply that a continuous-time fictitious play of the first kind

exists for any finite normal-form game.
Lemma A.1 (Harris, 1998) CTFP1 exists.
Proof. See Harris (1998, p. 244, paragraph following Prop. 7). O

Lemma A.1 is used in the proof of Lemma 1.

43Further, one might want to seek conditions that ensure that the results of the present paper
continue to hold if all bilateral games are dominance solvable (Milgrom and Roberts, 1991) or exhibit
strategic complementarities and diminishing returns (Krishna, 1992; Berger, 2008). However, as
discussed in Sela (1999), this last route seems less promising because interdependencies between
choices in bilateral games undermine such structural properties of the bilateral games.
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A.2 Convergence of continuous-time fictitious play in weighted potential games
In a later section of his paper, Harris (1998, Sec. 8) considers convergence of ficti-
tious play in continuous-time for the class of finite weighted potential games (with n

players), and establishes the following result.

Lemma A.2 (Harris, 1998) Any CTFP1 in a finite weighted potential game con-

verges to the set of Nash equilibria.

Proof. See Harris (1998, Th. 24). O

As any CTFP is, a fortiori, a CTFP1, Lemma A.2 implies that any finite weighted po-
tential game has the CTFP property as defined in the present paper. This observation

is used in the proof of Proposition 3.

A.3 Differential inclusions
Harris (1998, Sec. 7) derives convergence in discrete time from uniform convergence
in continuous time. For the reader’s convenience, this theory is reviewed below, where
we closely follow the exposition in Hofbauer and Sorin (2006, pp. 221-222).

Let Z be a nonempty, compact, and convex subset of some Euclidean space RY,

44

where M > 1, and let ® be an upper semi-continuous,** compact-valued, and convex-

f,45

valued correspondence from Z to itself.*” Considered is the formal relationship

2e€d(z)— 2, (74)

commonly referred to as a differential inclusion. By a solution of (74), we mean any

41 The correspondence ® is called upper semi-continuous (Aubin and Cellina, 1984, p. 41) if at any
2o € Z and for any open set O containing ®(zp), there exists an open neighborhood M of zy such
that ®(M) C O.

45 As is well-known, these assumptions hold, in particular, for the correspondence MBR on A(X;)x
e X A(X).
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absolutely continuous mapping z : [0, 00) — Z satisfying

0z(1)
or

€ O(z2(1)) — 2(7) (75)

at all points of differentiability of z.
Let d(.,.) denote the Euclidean distance in RM. Then, for any point z; € RM and
any nonempty subset Z, C R, we may define the Hausdorff distance by d(z1, Zy) =

inf, ez, d(21, 20)-

Definition A.2 A subset Zy C Z is called a global uniform attractor of the differential
inclusion (74) if, for any € > 0, there exists 7% (g) > 0 such that, for any solution z

of (74) with 2(0) € Z, and for any T > 7% (e), it holds that d(2(7), Zy) < ¢.

Let {8;}:2, be a sequence of parameters in [0, 1], strictly decreasing to zero as t — oo,
and such that ¥9°,8; = co. Then, a discrete-time counterpart to differential inclusion

(74) is given by
Py € B®(FP) + (1 — By P, (te N=1{1,2,...}), (76)

where {P;}9°, is a sequence in Z.

Lemma A.3 (Hofbauer and Sorin, 2006) Assume that Zy C Z is a global uniform
attractor of the differential inclusion (74). Then, for any € > 0, there exists t#(¢) € N

such that for any solution {P;}32, of (76), and any t > t¥# (), we have d(P;, Zy) < ¢.
Proof. See Hofbauer and Sorin (2006, Prop. 7). O

We make use of Lemma A.3 in the proof of Proposition 5.
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Appendix B. Details on Examples 2 and 3

Details on Example 2. Payoffs in the bilateral conflict G;;.1, where i € {1,2,3},

are shown in the left panel of Figure 7. One can check that G2 has the payoffs shown

in the right panel of Figure 7.

x=H | Xa=L x3=H x3=L
- 2 35 x2=H x2=L x2=H x2=L
i= 5 75 2.5 4 3 4.5
x1=H 2.5 2.75 x1=H 4 3.75
Xi = 2 1 3 15 2.5 3 2.75 3.5
2.75 3.75 3.5 4.5
x1=L 3 3.5 x1=L 4.5 4.5
4 4.5 3.75 4.5

Figure 7. Bilateral payoffs (left panel), and the normal form of G? (right panel).

s Lemma B.1 In G?, player i € {1,2,3} optimally chooses H if r;_1 —2r; .1 >0 (and

6 L Zf Ti—1 —27"i+1 S 0)

7 Proof. Using the bilateral payoff functions, one finds

Ui(H; Tit1, 7“1'71) - Uz’(L, Tit+1, Tifl)

= ui,i+1(H7 Ti+1) - ui,i+1<L7 7”1'+1) + Ui,zel(Hy 7’1'71) - ui,ifl(Ly 7’7;71) (77)
=7ip1- 0+ (1 —7ig1) - % + i1 (—%1) + (1 =7ri1) - (—%) (78)
= %(Ti—l — 2ri41). (79)

s The claim follows. [J
o Lemma B.2 G? has a unique Nash equilibrium, given by (ri,r35,75) = (0,0,0).

v Proof. Clearly, (L,L,L) is a pure-strategy Nash equilibrium in G?. Next, we show
u that the equilibrium is unique. Suppose first that there is a completely mixed-strategy
12 equilibrium (71, 79, 73). Then, it follows from Lemma B.1 that r3 —2ry = 0, 71 —2r3 =

13 0, and 75—2r; = 0. But the sole solution of this system is (r, 72, 73) = (0,0,0). Hence,
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G? does not admit a completely mixed equilibrium. Further, if another equilibrium
exists, at least one player must choose a pure strategy. Without loss of generality,
suppose this is player 3. Assume first that r3 = 1, so that player 3 chooses H. Then
the iterated elimination of strictly dominated strategies implies that player 2 chooses
L and that player 1 chooses H, but then player 3 would want to deviate to z3 = L.
Next, assume that player 3 chooses L. In this case, if r; > 0, then player 2 chooses
H and consequently r; = 0, which is impossible. If, however, player 1 chooses L. with
probability one, then player 3 would want to deviate unless also player 2 chooses L
with probability one. But that only brings us back to (r1,72,73) = (0,0,0). This

proves uniqueness, and hence, the lemma. []

Next, recall the coordinates of the points at which the process changes its direction:
-1 = (%7 %7 %) — D2 = (%7 %7 %) — P3 = (%7 %7 %) D) (80)
The following lemma shows that this path is indeed a stable cycle.

Lemma B.3 (i) At point p;, with i € {1,2,3}, player i optimally chooses L, while

players i — 1 and i+ 1 are both indifferent. (ii) There is A > 1 such that

)‘<p1 - (07 1’0)) = P3s — (07 170)7 (81)
/\(p2 - (0707 1)) =P1— (0707 1)7 (82)
Aps — (1,0,0)) = po — (1,0,0). (83)

Proof. (i) From Lemma B.1, player ¢ = 1 optimally chooses L if r3 — 2r, < 0. But
at p1 = (%, %, %), we even have r3 — 2ro = —1 < 0. Moreover, players 2 and 3 are
indifferent at p; because r; — 2r3 = 0 and r, — 2r; = 0. The points ps and p3 can
now be dealt with by straightforward symmetry considerations. This proves the first

claim. (i) Note that, with A =2 > 1,
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Apr—(0,1,0) =2+ (2,-2,3) = (3, —5,2) = ps — (0,1,0). (84)

The other two equations follow, again, by symmetry. This proves the second claim,

and hence, the lemma. [J

To see how Lemma B.3 implies the existence of a stable path, note that, on the linear
segment from p; to py, players 1 and 2 indeed optimally choose L, while player 3 is
indifferent and can be assumed to choose H. Thus, consistent with the definition of a
CTFP, the path moves from p; in the direction of the vector (0,0,1). However, the
collinearity condition (82) ensures that p, is eventually reached.*S Similar arguments

can be used to deal with the remaining segments.

Details on Example 3. The payoff matrix of G is shown in Figure 8.

X3=H Xa—l.
X2=H Xz—L X2=H Xz—L
1 0 6 5
x1=H 6 0 X1=H 5 1
5 0 1 6
5 6 0 1
X1=L 1 5 x1=1L 0 6
6 1 0 5

Figure 8. The game G*.

Lemma B.4 In G3, player 1 optimally chooses H if 5r3—ry < 2 (and L if 5r3—ry >
2); player 2 optimally chooses H if 5r1 +r3 > 3 (and L if 5ry + r3 < 3); player 3

optimally chooses H if bro —r1 > 2 (and L if bro — 1 < 2).

10Tndeed, equation (82) obviously implies that ps may be written as a strict convex combination
of p; and (0,0, 1). See Figure 4 for illustration.
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Proof. As for player 1, one notes that
Uy (Ha T2, TS) — U (La T2, TS)
= ToTlg (-4) + (1 — 7’2)7“3 . (—6) +7"2(1 — 7'3) -6 —+ (1 — 7"2)(1 — 7“3) -4 (85)

=4+ 27”2 - 107’3. (86)

This proves the claim regarding player 1. Similarly,
U2 (Tla H7 T3) — U2 (Tla L7 T3)
=Tirs - 6 + (1 - 7’1)7”3 . (—4) + 7"1(]. — Tg) -4+ (]_ — 7’1)(1 — 7’3) : <—6> (87)

= —6+107’1+2T3, (88)
proving the claim regarding player 2. Finally,

Ug(Tl,TQ,H) — U3(T1,T2,L)
=rre- 44+ (1 —r)re-6+r(1—7r9) (=6)+ (1L —7r)(1—19) - (—4) (89)

=4 — 2’/"1 + 10’/’2. (90)

This proves the final claim, and hence, the lemma. [J

N[ =

).

Lemma B.5 G? has a unique Nash equilibrium, given by (r},r3,r35) = (%, %,

Proof. Suppose first that player 1 chooses H with probability one. Then, by iterated
elimination of strictly dominated strategies, player 2 chooses H, and so does player
3. But then, player 1 would deviate to L. Suppose next that player 1 chooses L. with
probability one. Then, by the iterated elimination of strictly dominated strategies,
player 2 chooses L, and so does player 3. But then player 1 would deviate to H. Thus,
there is no equilibrium in which player 1 plays a pure strategy. Thus, € (0, 1),
and by Lemma B.4, 5r3 — ro = 2. Clearly, this precludes r3 = 0 and r3 = 1,

so that also player 3 must randomize. By Lemma B.4, 5ry — r; = 2. But this
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excludes ro = 0 and r, = 1. Hence, any equilibrium is necessarily completely mixed.
There is a unique completely mixed equilibrium, because the system of indifference
relationships —ry 4+ 5r3 = 2, 5r; +r3 = 3, and —ry + 5ry = 2 has the unique solution

(T17r27r3) = (%7 %a %) O
Recall the cycle

. —p=(a,b,c) > po=(1—-c,a,b) —>p3=(1—-b1—c,a)— (91)

—p=1-a,1-b1—¢c)—ps=(c,1—a,1—->b) —ps=(bc,1 —a)— ..

Ol

where (a,b,c) = ( ,g, %) correspond to the respective probabilities to play H. The

following two lemmas show that the cyclic process is indeed a CTFP.

Lemma B.6 (i) At pi, players 1 optimally chooses L, player 2 is indifferent, and
player 8 optimally chooses H. (ii) At ps, players 1 and 2 optimally choose L, whereas
player 3 is indifferent. (iii) At ps, player 1 is indifferent, while players 2 and 3
optimally choose L. (iv) At py, player 1 optimally chooses H, player 2 is indifferent,
and player 8 optimally chooses L. (v) At ps, players 1 and 2 optimally choose H,
whereas player 3 is indifferent. (vi) At ps, player 1 is indifferent, while players 2 and

3 optimally choose H.

Proof. (i) By Lemma B.4, player 1 optimally chooses L if 5r3 —ry > 2. At p; =

(a,b,c) = (%, %, g), we even have 5r3 — ry = 3 > 2. Next, player 2 is indifferent if
5ry +rg = 3. This is true at p;. Finally, player 3 optimally chooses H if 57y —r; > 2.
At py1, we even have 5ry—r; = 4 > 2. (ii) Player 1 optimally chooses L if 5r3 —ry > 2.
Atpy = (1—c,a,b) = (%, %, %), we even have 5rz3—ry = 4 > 2. Next, player 2 optimally
chooses L if 5r; + r3 < 3. At ps, we even have br; + r3 = 2 < 3. Finally, player 3

is indifferent if 5ro — r; = 2. At po, we indeed have 5ry — r; = 2. (i) Player 1 is
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indifferent if 573 — 75 = 2. And indeed, at p3 = (1 —b,1 — ¢,a) = (5, 2, 5), we have
bry3 — ry = 2. Player 2 optimally chooses L if 5r; + r3 < 3. At ps3, we even have
5r1 +r3 = 1 < 3. Finally, player 3 optimally chooses L if 5ry — r; < 2. At p3, we
even have 5ry —r; = 1 < 2. (iv) Player 1 optimally chooses H if 5r3 — 1y < 2. At
pp=(1-a,1-b1—c)= (g, é, %), we even have br3 —ry = 1 < 2. Next, player 2 is
indifferent if 5r; + r3 = 3. This is true at ps. Finally, player 3 optimally chooses L if
bro—ry < 2. At py, we even have bro—r; = 0 < 2. (v) Player 1 optimally chooses H if
br3—re < 2. At ps = (¢,1—a,1—-0) = (g, g, %), we even have 5r3 —ry = 0 < 2. Next,
player 2 optimally chooses H if 5r; 4+ r3 > 3. At ps, we even have 5ry +r3 =4 > 3.
Finally, player 3 is indifferent if 57y — 71 = 2. And at ps, we indeed have this. (vi)

)7

we have this. Player 2 optimally chooses H if 5r; + r3 > 3. At pg, we even have

Player 1 is indifferent if 575 — o = 2. And indeed, at ps = (b,¢,1 —a) = (3,1,

|t

5r1 + r3 = 5 > 3. Finally, player 3 optimally chooses H if 575 — 1 > 2. At pg, we

even have bry — r; = 3 > 2. This proves the last claim and therefore the lemma. []
The final lemma shows that process (91) is a stable cycle.

Lemma B.7 There is A > 1 such that

Alp2 = (0,0,1)) = p1 — (0,0,1) (92)

Aps = D2 (93)
Alps — (1,0,0)) = ps — (1,0,0) (94)
A(ps — (1,1,0)) = ps — (1,1,0) (95)
Aps — (1,1,1)) =ps — (1,1,1) (96)
AMpr —(0,1,1)) =pg — (0,1, 1). (97)

Proof. One can easily verify that equations (92-97) are satisfied for A = 2. [
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Appendix C. The case of a two-person zero-sum game

This section presents a self-contained proof of convergence of CTFP for finite two-
person zero-sum games. Needless to say, the sole departure from existing proofs
(Hofbauer, 1995; Harris, 1998; Berger, 2006; Hofbauer and Sorin, 2006) consists in

the use of the Dini derivative.

Lemma C.1 (Brown 1951; Hofbauer 1995; Harris, 1998) Any finite two-person

zero-sum game has the continuous-time fictitious-play property.

Proof. We closely follow the steps of the proof of Proposition 1. Denote by X;
player i’s strategy space, for ¢ € {1,2}, and by A player 1’s payoff matrix. For
= (p1, p2) € A(X1) x A(X3), let

L = ma Auo — min A 98
(1) ;A 1+ App o A(X2)M1 &a. (98)

Take any CTFP m, with corresponding process of independent averages «. Then,
L(a(7)) = my(7) - Aaa(T) — an(7) - Amy(7), (99)

for any 7 > 1. Moreover, for any 7 € (0, 7),

L((T)) > my(7) - Aaa(T) — a1 (T) - Ama(T). (100)
Hence,
TL((7)) —TL((T)) < (T / mo(7")dr" — / my(7')dr" - Ama(7).  (101)

Dividing by 7 — 7, and taking the limit 7 — 7 shows that

limsup 22T ZTEQ@D) oy A () = ma(7) - Ama(r) =0 (102)

To7,7<T -

for a.e. 7 > 1. Given that 7£(a(7)) is continuous in 7, this implies that 7L(«(7)) is
declining (Royden, 1988, Prop. 2, p. 99). But £ > 0, so that L(a(7)) — 0 as 7 — oc.

Thus, any accumulation point of « is indeed a Nash equilibrium. [J
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